{"title":"Functional Biomaterials Derived from Protein Liquid–Liquid Phase Separation and Liquid-to-Solid Transition","authors":"Tianchen Li, Dea Ilhamsyah, Benedict Tai, Yi Shen","doi":"10.1002/adma.202414703","DOIUrl":null,"url":null,"abstract":"Protein phase transitions play a vital role in both cellular functions and pathogenesis. Dispersed proteins can undergo liquid–liquid phase separation to form condensates, a process that is reversible and highly regulated within cells. The formation and physicochemical properties of these condensates, such as composition, viscosity, and multiphase miscibility, are precisely modulated to fulfill specific biological functions. However, protein condensates can undergo a further liquid-to-solid state, forming β-sheet-rich aggregates that may disrupt cellular function and lead to diseases. While this phenomenon is crucial for biological processes and has significant implications for neurodegenerative diseases, the phase behavior of naturally derived or engineered proteins and polypeptides also presents opportunities for developing high-performance, multifunctional materials at various scales. Additionally, the unique molecular recruitment capabilities of condensates inspire innovative advancements in biomaterial design for applications in drug discovery, delivery, and biosynthesis. This work highlights recent progress in understanding the mechanisms underlying protein phase behavior, particularly how it responds to internal molecular changes and external physical stimuli. Furthermore, the fabrication of multifunctional materials derived from diverse protein sources through controlled phase transitions is demonstrated.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"23 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202414703","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein phase transitions play a vital role in both cellular functions and pathogenesis. Dispersed proteins can undergo liquid–liquid phase separation to form condensates, a process that is reversible and highly regulated within cells. The formation and physicochemical properties of these condensates, such as composition, viscosity, and multiphase miscibility, are precisely modulated to fulfill specific biological functions. However, protein condensates can undergo a further liquid-to-solid state, forming β-sheet-rich aggregates that may disrupt cellular function and lead to diseases. While this phenomenon is crucial for biological processes and has significant implications for neurodegenerative diseases, the phase behavior of naturally derived or engineered proteins and polypeptides also presents opportunities for developing high-performance, multifunctional materials at various scales. Additionally, the unique molecular recruitment capabilities of condensates inspire innovative advancements in biomaterial design for applications in drug discovery, delivery, and biosynthesis. This work highlights recent progress in understanding the mechanisms underlying protein phase behavior, particularly how it responds to internal molecular changes and external physical stimuli. Furthermore, the fabrication of multifunctional materials derived from diverse protein sources through controlled phase transitions is demonstrated.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.