Discovery of a Novel Selective and Cell-Active N6-Methyladenosine RNA Demethylase ALKBH5 Inhibitor

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL Journal of Medicinal Chemistry Pub Date : 2025-02-09 DOI:10.1021/acs.jmedchem.4c01542
Xianyuan Yang, Kaitao Huang, Xu-Nian Wu, Chen Zhang, Yixuan Sun, Yanfeng Gao, Jiawang Zhou, Lijun Tao, Haisheng Zhang, Yinuo Wu, Hai-Bin Luo, Hongsheng Wang
{"title":"Discovery of a Novel Selective and Cell-Active N6-Methyladenosine RNA Demethylase ALKBH5 Inhibitor","authors":"Xianyuan Yang, Kaitao Huang, Xu-Nian Wu, Chen Zhang, Yixuan Sun, Yanfeng Gao, Jiawang Zhou, Lijun Tao, Haisheng Zhang, Yinuo Wu, Hai-Bin Luo, Hongsheng Wang","doi":"10.1021/acs.jmedchem.4c01542","DOIUrl":null,"url":null,"abstract":"N<sup>6</sup>-methyladenosine (m<sup>6</sup>A), the most abundant methylation on mRNA, plays pivotal roles in regulating mRNA biological functions, which affect cell functions. ALKBH5, an m<sup>6</sup>A demethylase, was found to be an oncogene in several cancer types, including triple-negative breast cancer (TNBC). Here, we report a novel and selective ALKBH5 covalent inhibitor, <b>W23</b>-<b>1006</b>, through virtual screening and structure optimization. It covalently bonds to the ALKBH5 C200 residue with an IC<sub>50</sub> value of 3.848 μM, representing roughly 30- and 8-fold stronger inhibitory activity than that against FTO and ALKBH3, respectively. Cellular experiments demonstrated that <b>W23-1006</b> could efficiently enhance the m<sup>6</sup>A level on fibronectin 1 (FN1) mRNA, leading to strong suppression of TNBC cell proliferation and migration in vitro as well as tumor growth and metastasis in vivo. Collectively, our study developed a novel, selective, and cell-active ALKBH5 covalent inhibitor, <b>W23-1006</b>, which could be a potential therapeutic option for cancer, such as TNBC treatment.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"1 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01542","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

N6-methyladenosine (m6A), the most abundant methylation on mRNA, plays pivotal roles in regulating mRNA biological functions, which affect cell functions. ALKBH5, an m6A demethylase, was found to be an oncogene in several cancer types, including triple-negative breast cancer (TNBC). Here, we report a novel and selective ALKBH5 covalent inhibitor, W23-1006, through virtual screening and structure optimization. It covalently bonds to the ALKBH5 C200 residue with an IC50 value of 3.848 μM, representing roughly 30- and 8-fold stronger inhibitory activity than that against FTO and ALKBH3, respectively. Cellular experiments demonstrated that W23-1006 could efficiently enhance the m6A level on fibronectin 1 (FN1) mRNA, leading to strong suppression of TNBC cell proliferation and migration in vitro as well as tumor growth and metastasis in vivo. Collectively, our study developed a novel, selective, and cell-active ALKBH5 covalent inhibitor, W23-1006, which could be a potential therapeutic option for cancer, such as TNBC treatment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
期刊最新文献
Structure Optimization of Natural Product Catalpol to Obtain Novel and Potent Analogs against Heart Failure Discovery of a Novel Selective and Cell-Active N6-Methyladenosine RNA Demethylase ALKBH5 Inhibitor Guianensin, a Blackfly Salivary Protein, Inhibits the Lectin Pathway of Complement NQO1-Activatable Circular Antisense Oligonucleotides for Tumor-Cell-Specific Survivin Gene Silencing and Antitumor Therapy Novel Indoleamine-2,3-Dioxygenase-Targeted Pt(IV) Prodrugs Regulate the Tumor Immune Microenvironment to Achieve Chemoimmunotherapy In Vitro and In Vivo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1