Genome Motif Discovery in Zika Virus: Computational Techniques and Validation Using Greedy Method

Pushpa Susant Mahapatro , Jatinderkumar R. Saini , Shraddha Vaidya
{"title":"Genome Motif Discovery in Zika Virus: Computational Techniques and Validation Using Greedy Method","authors":"Pushpa Susant Mahapatro ,&nbsp;Jatinderkumar R. Saini ,&nbsp;Shraddha Vaidya","doi":"10.1016/j.procs.2024.12.028","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying patterns in the genome sequences is an essential yet tricky task in Bioinformatics. It provides information about gene activity and gene functionality. In Deoxyribose Nucleic Acid (DNA) sequence analysis, computational approaches like Greedy motif search can be applied for motif identification. It finds recurring patterns called motifs by iteratively selecting the most promising sequence of a specified length from each DNA string. The selected string maximizes the scoring function and hence is selected. First, a set of initial motifs is selected for each set in the input string. Then, a subsequence that best aligns with the selected string is selected for the next iteration. The score is calculated and needs to be minimized. The validation of the obtained motif is also performed. This study focuses on applying the algorithm to identify patterns in the genome sequence of the Zika virus. In finding conserved patterns in the Zika virus genome sequence, the Greedy motif search is known for its efficiency and precision. The Greedy motif search results are compared with Gibbs sampler method of motif identification. This study adds knowledge of the viral genome and suggests new treatment development methods by confining these patterns.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"252 ","pages":"Pages 260-269"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050924034604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying patterns in the genome sequences is an essential yet tricky task in Bioinformatics. It provides information about gene activity and gene functionality. In Deoxyribose Nucleic Acid (DNA) sequence analysis, computational approaches like Greedy motif search can be applied for motif identification. It finds recurring patterns called motifs by iteratively selecting the most promising sequence of a specified length from each DNA string. The selected string maximizes the scoring function and hence is selected. First, a set of initial motifs is selected for each set in the input string. Then, a subsequence that best aligns with the selected string is selected for the next iteration. The score is calculated and needs to be minimized. The validation of the obtained motif is also performed. This study focuses on applying the algorithm to identify patterns in the genome sequence of the Zika virus. In finding conserved patterns in the Zika virus genome sequence, the Greedy motif search is known for its efficiency and precision. The Greedy motif search results are compared with Gibbs sampler method of motif identification. This study adds knowledge of the viral genome and suggests new treatment development methods by confining these patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寨卡病毒基因组基序发现:使用贪婪方法的计算技术和验证
在生物信息学中,识别基因组序列中的模式是一项重要而棘手的任务。它提供了有关基因活性和基因功能的信息。在脱氧核糖核酸(DNA)序列分析中,可以采用贪心基序搜索等计算方法进行基序识别。它通过从每个DNA串中迭代地选择指定长度的最有希望的序列来发现称为基序的重复模式。所选字符串使评分函数最大化,因此被选中。首先,为输入字符串中的每个集合选择一组初始图案。然后,为下一次迭代选择与所选字符串最一致的子序列。分数是计算出来的,需要最小化。还对所获得的基序进行了验证。本研究的重点是应用该算法识别寨卡病毒基因组序列中的模式。在寻找寨卡病毒基因组序列中的保守模式时,Greedy基序搜索以其效率和精度而闻名。将Greedy motif搜索结果与Gibbs sampler motif识别方法进行了比较。这项研究增加了对病毒基因组的了解,并通过限制这些模式提出了新的治疗开发方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Contents Contents Contents Preface Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1