A multi-attention deep architecture to stratify lung nodule malignancy from CT scans

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Medical Engineering & Physics Pub Date : 2025-02-07 DOI:10.1016/j.medengphy.2025.104305
Alejandra Moreno , Andrea Rueda , Fabio Martínez
{"title":"A multi-attention deep architecture to stratify lung nodule malignancy from CT scans","authors":"Alejandra Moreno ,&nbsp;Andrea Rueda ,&nbsp;Fabio Martínez","doi":"10.1016/j.medengphy.2025.104305","DOIUrl":null,"url":null,"abstract":"<div><div>Lung cancer remains the principal cause of cancer-related deaths. Nodules are the main radiological finding, typically observed from low-dose CT scans. Nonetheless, the nodule characterization diagnosis remains subjective, reporting a moderate agreement among experts' observations, especially in identifying malignancy stratification. The proposed approach presents a deep multi-attention strategy, validated exhaustively to classify nodule masses according to four malignancy degrees. This work introduces a multi-attention architecture dedicated to stratifying nodules among malignancy stages. The architecture receives volumetric nodule regions and learns multi-scale saliency maps, focusing on determinant malignancy patterns of the observed masses. Specialized attention heads capture related patterns associated with lobulated, textural, and spiculated features. Validation includes an extensive analysis regarding multiple attention features, allowing to establish a correlation with other radiological findings. The proposed approach achieves an AUC of 85.35% for a classical multi-classification and a mean AUC of 82.90% in a one-vs-all validation methodology, showing competitive results in the state-of-the-art. The introduced architecture has capabilities to support nodule stratification and to classify nodule features. The exhaustive validation also suggests a proper generalization performance, which is a potential property to transfer this strategy in real scenarios.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"137 ","pages":"Article 104305"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325000244","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer remains the principal cause of cancer-related deaths. Nodules are the main radiological finding, typically observed from low-dose CT scans. Nonetheless, the nodule characterization diagnosis remains subjective, reporting a moderate agreement among experts' observations, especially in identifying malignancy stratification. The proposed approach presents a deep multi-attention strategy, validated exhaustively to classify nodule masses according to four malignancy degrees. This work introduces a multi-attention architecture dedicated to stratifying nodules among malignancy stages. The architecture receives volumetric nodule regions and learns multi-scale saliency maps, focusing on determinant malignancy patterns of the observed masses. Specialized attention heads capture related patterns associated with lobulated, textural, and spiculated features. Validation includes an extensive analysis regarding multiple attention features, allowing to establish a correlation with other radiological findings. The proposed approach achieves an AUC of 85.35% for a classical multi-classification and a mean AUC of 82.90% in a one-vs-all validation methodology, showing competitive results in the state-of-the-art. The introduced architecture has capabilities to support nodule stratification and to classify nodule features. The exhaustive validation also suggests a proper generalization performance, which is a potential property to transfer this strategy in real scenarios.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
期刊最新文献
A patient-matched prosthesis for thumb amputations: Design, mechanical and functional evaluation Influence of surface type on outdoor gait parameters measured using an In-Shoe Motion Sensor System Assessment of pre- and post-operative gait dynamics in total knee arthroplasty by a wearable capture system A novel 3D lightweight model for COVID-19 lung CT Lesion Segmentation ResGloTBNet: An interpretable deep residual network with global long-range dependency for tuberculosis screening of sputum smear microscopy images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1