Scratching beneath the surface: Using Ground-Penetrating Radar to disentangle pronival ramparts, embryonic rock glaciers and moraines (Gardetta Plateau, Southwestern Alps)
Adriano Ribolini , Emanuele Forte , Varun Khajuria , Renato R. Colucci , Luca Paro , Mauro Guglielmin
{"title":"Scratching beneath the surface: Using Ground-Penetrating Radar to disentangle pronival ramparts, embryonic rock glaciers and moraines (Gardetta Plateau, Southwestern Alps)","authors":"Adriano Ribolini , Emanuele Forte , Varun Khajuria , Renato R. Colucci , Luca Paro , Mauro Guglielmin","doi":"10.1016/j.geomorph.2025.109647","DOIUrl":null,"url":null,"abstract":"<div><div>The distinction between debris ridges/ramparts that form at the base of mountain slopes in cold environments is important to understanding the (palaeo) environmental condition that prompted their formation. Despite the definition of diagnostic criteria, the identification of the formative (nival, permafrost creep, glacial) and post-depositional mechanisms remains uncertain as it is mostly reliant on surface observations. We present the results of a Ground-Penetrating Radar (GPR) survey carried out on landforms presenting similarities from a geomorphological perspective (i.e. pronival rampart, protalus rock glacier, moraine) in the same Alpine context. The 2D radar profiles provide imaging of the internal structure of these landforms, allowing us to formulate hypotheses on the depositional processes that led to their formation. In the pronival rampart, concave upward and mound-shaped radar reflections fit with the presence of a ridge/rampart at the base of a permanent snow patch. Mound-shaped, flat or counterslope reflectors reflect the existence of stratigraphic beds mantling the sides of the ridge and infill the depression between this and the talus upslope or the retreating snow patch front. Some sequences of GPR facies sequences are consistently referable to progradational/retrogradational depositional processes. Poor articulation of facies architecture characterizes frontal moraines and embryonic protalus rock glaciers. The succession of predominantly planar radar surfaces/facies is consistent with an important aggradational component that can be explained by a stratigraphic overlap of debris layers fed by the glacial front and/or of permafrost-affected sedimentary units.</div><div>The GPR imaging of the interior of these mountain landforms frequently found at the talus foot can offer crucial data for the correct interpretation of the formative mechanisms and, thereby of the environmental conditions that promoted their formation.</div></div>","PeriodicalId":55115,"journal":{"name":"Geomorphology","volume":"474 ","pages":"Article 109647"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomorphology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169555X25000571","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The distinction between debris ridges/ramparts that form at the base of mountain slopes in cold environments is important to understanding the (palaeo) environmental condition that prompted their formation. Despite the definition of diagnostic criteria, the identification of the formative (nival, permafrost creep, glacial) and post-depositional mechanisms remains uncertain as it is mostly reliant on surface observations. We present the results of a Ground-Penetrating Radar (GPR) survey carried out on landforms presenting similarities from a geomorphological perspective (i.e. pronival rampart, protalus rock glacier, moraine) in the same Alpine context. The 2D radar profiles provide imaging of the internal structure of these landforms, allowing us to formulate hypotheses on the depositional processes that led to their formation. In the pronival rampart, concave upward and mound-shaped radar reflections fit with the presence of a ridge/rampart at the base of a permanent snow patch. Mound-shaped, flat or counterslope reflectors reflect the existence of stratigraphic beds mantling the sides of the ridge and infill the depression between this and the talus upslope or the retreating snow patch front. Some sequences of GPR facies sequences are consistently referable to progradational/retrogradational depositional processes. Poor articulation of facies architecture characterizes frontal moraines and embryonic protalus rock glaciers. The succession of predominantly planar radar surfaces/facies is consistent with an important aggradational component that can be explained by a stratigraphic overlap of debris layers fed by the glacial front and/or of permafrost-affected sedimentary units.
The GPR imaging of the interior of these mountain landforms frequently found at the talus foot can offer crucial data for the correct interpretation of the formative mechanisms and, thereby of the environmental conditions that promoted their formation.
期刊介绍:
Our journal''s scope includes geomorphic themes of: tectonics and regional structure; glacial processes and landforms; fluvial sequences, Quaternary environmental change and dating; fluvial processes and landforms; mass movement, slopes and periglacial processes; hillslopes and soil erosion; weathering, karst and soils; aeolian processes and landforms, coastal dunes and arid environments; coastal and marine processes, estuaries and lakes; modelling, theoretical and quantitative geomorphology; DEM, GIS and remote sensing methods and applications; hazards, applied and planetary geomorphology; and volcanics.