Investigating changes in proglacial stream suspended sediment concentration and their drivers using large scale remote sensing

IF 3.1 2区 地球科学 Q2 GEOGRAPHY, PHYSICAL Geomorphology Pub Date : 2025-02-13 DOI:10.1016/j.geomorph.2025.109664
Lily K. Vowels , William H. Armstrong , Irina Overeem , Daniel McGrath , Brianna Rick , Adrian Dye , Derek Martin
{"title":"Investigating changes in proglacial stream suspended sediment concentration and their drivers using large scale remote sensing","authors":"Lily K. Vowels ,&nbsp;William H. Armstrong ,&nbsp;Irina Overeem ,&nbsp;Daniel McGrath ,&nbsp;Brianna Rick ,&nbsp;Adrian Dye ,&nbsp;Derek Martin","doi":"10.1016/j.geomorph.2025.109664","DOIUrl":null,"url":null,"abstract":"<div><div>Glaciers are prolific sediment producers, and quantifying trends in proglacial suspended sediment concentration (SSC) is critical for understanding the evolution of sediment dynamics in glacierized systems, a task impeded by sparse in situ observations in these often-remote environments. In this study, we use Landsat-derived spectral reflectance to quantify how SSC changed between 1984 and 2023 across a range of proglacial river systems (<em>n</em> = 54) in Alaska and northwestern Canada. We investigated how observed SSC changes were related to upstream proglacial lakes, as well as glaciological factors. We found that 54 % of all study sites underwent statistically significant SSC changes (median rate of statistically significant change = −1.8 mg L<sup>−1</sup> yr<sup>−1</sup> or − 0.7 % yr<sup>−1</sup>; IQR = −8.4 to 0.5 mg L<sup>−1</sup> yr<sup>−1</sup>). Streams below proglacial lakes are more likely to have significant changes than systems without lakes (60 % of sites with upstream lakes vs 42 % of sites without upstream lakes). SSC declines dominate statistically significant trends for sites with upstream lakes, while increasing SSC is dominant for rivers with no upstream proglacial lake. We perform statistical analyses to investigate potential physical drivers of SSC change and find a direct association between glacier area and a site's median SSC as one of the few significant correlations. Proglacial lake area and its change are poor predictors for both downstream median SSC and SSC change. Together, these findings show clear changes in sediment dynamics in glacierized watersheds over ~40 years, with proglacial lakes playing a notable but complicated role in downstream sedimentary processes.</div></div>","PeriodicalId":55115,"journal":{"name":"Geomorphology","volume":"475 ","pages":"Article 109664"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomorphology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169555X25000741","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Glaciers are prolific sediment producers, and quantifying trends in proglacial suspended sediment concentration (SSC) is critical for understanding the evolution of sediment dynamics in glacierized systems, a task impeded by sparse in situ observations in these often-remote environments. In this study, we use Landsat-derived spectral reflectance to quantify how SSC changed between 1984 and 2023 across a range of proglacial river systems (n = 54) in Alaska and northwestern Canada. We investigated how observed SSC changes were related to upstream proglacial lakes, as well as glaciological factors. We found that 54 % of all study sites underwent statistically significant SSC changes (median rate of statistically significant change = −1.8 mg L−1 yr−1 or − 0.7 % yr−1; IQR = −8.4 to 0.5 mg L−1 yr−1). Streams below proglacial lakes are more likely to have significant changes than systems without lakes (60 % of sites with upstream lakes vs 42 % of sites without upstream lakes). SSC declines dominate statistically significant trends for sites with upstream lakes, while increasing SSC is dominant for rivers with no upstream proglacial lake. We perform statistical analyses to investigate potential physical drivers of SSC change and find a direct association between glacier area and a site's median SSC as one of the few significant correlations. Proglacial lake area and its change are poor predictors for both downstream median SSC and SSC change. Together, these findings show clear changes in sediment dynamics in glacierized watersheds over ~40 years, with proglacial lakes playing a notable but complicated role in downstream sedimentary processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geomorphology
Geomorphology 地学-地球科学综合
CiteScore
8.00
自引率
10.30%
发文量
309
审稿时长
3.4 months
期刊介绍: Our journal''s scope includes geomorphic themes of: tectonics and regional structure; glacial processes and landforms; fluvial sequences, Quaternary environmental change and dating; fluvial processes and landforms; mass movement, slopes and periglacial processes; hillslopes and soil erosion; weathering, karst and soils; aeolian processes and landforms, coastal dunes and arid environments; coastal and marine processes, estuaries and lakes; modelling, theoretical and quantitative geomorphology; DEM, GIS and remote sensing methods and applications; hazards, applied and planetary geomorphology; and volcanics.
期刊最新文献
Editorial Board Response to sea-level change in a non-deltaic coastal plain: Insights from cores chronologies Spatial provenance distributions in the Chinese Loess Plateau and implication for reconstruction of desert margin Rapid and large-scale landscape modification caused by the draining of a glacier-dammed lake in British Columbia, Canada Investigating changes in proglacial stream suspended sediment concentration and their drivers using large scale remote sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1