Contaminant detection in flexible polypropylene packaging waste using hyperspectral imaging and machine learning

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Waste management Pub Date : 2025-02-10 DOI:10.1016/j.wasman.2025.02.010
Giuseppe Bonifazi, Giuseppe Capobianco, Paola Cucuzza, Silvia Serranti
{"title":"Contaminant detection in flexible polypropylene packaging waste using hyperspectral imaging and machine learning","authors":"Giuseppe Bonifazi,&nbsp;Giuseppe Capobianco,&nbsp;Paola Cucuzza,&nbsp;Silvia Serranti","doi":"10.1016/j.wasman.2025.02.010","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible plastic packaging (FPP) constitutes one of the largest post-consumer plastic streams processed in recycling facilities. To address the key challenges of its sorting and quality control, this study developed and tested a classification procedure based on hyperspectral imaging (HSI), combined with machine learning. The aim was to automatically detect contaminants (i.e., other polymers and materials) within a polypropylene (PP) stream of FPP waste (FPPW). Hyperspectral images of representative FPPW samples of PP and contaminants were acquired in the short-wave infrared range (SWIR: 1000–2500 nm) and preprocessed using different combinations of algorithms to emphasize their spectral characteristics. Principal component analysis (PCA) was applied as exploratory analysis of the spectral data followed by the application of a hierarchical classification model, based on partial least squares-discriminant analysis (Hi-PLS-DA), to differentiate between PP and other materials considered as contaminants, including polyethylene, polyester, polyethylene terephthalate, polystyrene, cellulose, polyurethane, aluminum and multilayer films. The results showed a classification accuracy of 87.5 %, with 147 out of 168 flakes correctly identified, as verified by Fourier transform-infrared (FT-IR) spectroscopy, demonstrating the model robust performance in distinguishing PP from other materials. Assuming all correctly identified particles are properly sorted, the model is predicted to achieve a Recovery of 98.2 % by weight for PP, indicating minimal material losses, with a Grade of 94.4 % by weight, representing a significant improvement compared to 77.2 % in the initial feed FPPW stream. This work demonstrated the effectiveness of HSI combined with Hi-PLS-DA in developing an automatic and efficient sorting and/or quality control process for FPPW, with minor classification errors occurring in filaments and multilayer flakes.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"195 ","pages":"Pages 264-274"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X25000595","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible plastic packaging (FPP) constitutes one of the largest post-consumer plastic streams processed in recycling facilities. To address the key challenges of its sorting and quality control, this study developed and tested a classification procedure based on hyperspectral imaging (HSI), combined with machine learning. The aim was to automatically detect contaminants (i.e., other polymers and materials) within a polypropylene (PP) stream of FPP waste (FPPW). Hyperspectral images of representative FPPW samples of PP and contaminants were acquired in the short-wave infrared range (SWIR: 1000–2500 nm) and preprocessed using different combinations of algorithms to emphasize their spectral characteristics. Principal component analysis (PCA) was applied as exploratory analysis of the spectral data followed by the application of a hierarchical classification model, based on partial least squares-discriminant analysis (Hi-PLS-DA), to differentiate between PP and other materials considered as contaminants, including polyethylene, polyester, polyethylene terephthalate, polystyrene, cellulose, polyurethane, aluminum and multilayer films. The results showed a classification accuracy of 87.5 %, with 147 out of 168 flakes correctly identified, as verified by Fourier transform-infrared (FT-IR) spectroscopy, demonstrating the model robust performance in distinguishing PP from other materials. Assuming all correctly identified particles are properly sorted, the model is predicted to achieve a Recovery of 98.2 % by weight for PP, indicating minimal material losses, with a Grade of 94.4 % by weight, representing a significant improvement compared to 77.2 % in the initial feed FPPW stream. This work demonstrated the effectiveness of HSI combined with Hi-PLS-DA in developing an automatic and efficient sorting and/or quality control process for FPPW, with minor classification errors occurring in filaments and multilayer flakes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
期刊最新文献
A novel method of accounting for plastic packaging waste Classification and predictive leaching risk assessment of construction and demolition waste using multivariate statistical and machine learning analyses Comparative evaluation of phosphorus recovery from sewage sludge thermal products via magnesium ammonium phosphate and hydroxyapatite methods Identifying plastic materials in post-consumer food containers and packaging waste using terahertz spectroscopy and machine learning Hydrothermally-targeted synthesis of Al-substituted tobermorite using MSWI fly ash with industrial SiO2 for potentially high-quality utilization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1