{"title":"Hybridized implicit-explicit flux reconstruction methods for geometry-induced stiffness","authors":"Carlos A. Pereira, Brian C. Vermeire","doi":"10.1016/j.jcp.2025.113819","DOIUrl":null,"url":null,"abstract":"<div><div>For turbulent problems of industrial scale, computational cost may become prohibitive due to the stability constraints associated with explicit time discretization of the underlying conservation laws. On the other hand, implicit methods allow for larger time-step sizes but require exorbitant computational resources. Implicit-explicit (IMEX) formulations combine both temporal approaches, using an explicit method in nonstiff portions of the domain and implicit in stiff portions. While these methods can be shown to be orders of magnitude faster than typical explicit discretizations, they are still limited by their implicit discretization in terms of cost. Hybridization reduces the scaling of these systems to an effective lower dimension, which allows the system to be solved at significant speedup factors compared to standard implicit methods. This work proposes an IMEX scheme that combines hybridized and standard flux reconstruction (FR) methods to tackle geometry-induced stiffness. By using the so-called transmission conditions, an overall conservative formulation can be obtained after combining both explicit FR and hybridized implicit FR methods. We verify and apply our approach to a series of numerical examples, including a multi-element airfoil at Reynolds number 1.7 million. Results demonstrate speedup factors of four against standard IMEX formulations and at least 15 against standard explicit formulations for the same problem.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"528 ","pages":"Article 113819"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125001020","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
For turbulent problems of industrial scale, computational cost may become prohibitive due to the stability constraints associated with explicit time discretization of the underlying conservation laws. On the other hand, implicit methods allow for larger time-step sizes but require exorbitant computational resources. Implicit-explicit (IMEX) formulations combine both temporal approaches, using an explicit method in nonstiff portions of the domain and implicit in stiff portions. While these methods can be shown to be orders of magnitude faster than typical explicit discretizations, they are still limited by their implicit discretization in terms of cost. Hybridization reduces the scaling of these systems to an effective lower dimension, which allows the system to be solved at significant speedup factors compared to standard implicit methods. This work proposes an IMEX scheme that combines hybridized and standard flux reconstruction (FR) methods to tackle geometry-induced stiffness. By using the so-called transmission conditions, an overall conservative formulation can be obtained after combining both explicit FR and hybridized implicit FR methods. We verify and apply our approach to a series of numerical examples, including a multi-element airfoil at Reynolds number 1.7 million. Results demonstrate speedup factors of four against standard IMEX formulations and at least 15 against standard explicit formulations for the same problem.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.