Hubbard U correction on magnetic interactions and Curie temperatures of FeO, Fe2O3, and Fe3O4

IF 3 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Magnetism and Magnetic Materials Pub Date : 2025-02-08 DOI:10.1016/j.jmmm.2025.172846
Mustafa Özgür, Suat Pat, Şadan Korkmaz
{"title":"Hubbard U correction on magnetic interactions and Curie temperatures of FeO, Fe2O3, and Fe3O4","authors":"Mustafa Özgür,&nbsp;Suat Pat,&nbsp;Şadan Korkmaz","doi":"10.1016/j.jmmm.2025.172846","DOIUrl":null,"url":null,"abstract":"<div><div>Nanosized ferromagnets hold great potential for the development of nanoscale spintronic devices. In this study, the structural, electronic and magnetic properties of FeO, Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> are investigated using density functional theory (DFT) calculations with and without Hubbard U correction. The inclusion of the Hubbard U term is crucial for accurately capturing the strong electron–electron correlations in iron oxides, which significantly affect their electronic and magnetic behaviors, including the Curie temperature. For FeO, the PBEsol calculations predict a metallic band structure, while the PBEsol+U calculations yield a band gap of 2.08 eV. Similarly, for Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, the band gap increases from 0.59 eV with PBEsol to 2.50 eV with PBEsol+U, and for Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>, it changes from metallic to 1.71 eV when the Hubbard U correction is applied. The magnetic moments for Fe atoms also show a significant improvement with the inclusion of the Hubbard U correction. In FeO, the magnetic moment increases from 3.21 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mtext>B</mtext></mrow></msub></math></span> with PBEsol to 3.38 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mtext>B</mtext></mrow></msub></math></span> with PBEsol+U. For Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, the values change from 3.15 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mtext>B</mtext></mrow></msub></math></span> to 3.85 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mtext>B</mtext></mrow></msub></math></span>, and for Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>, from 3.32 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mtext>B</mtext></mrow></msub></math></span> to 3.75 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mtext>B</mtext></mrow></msub></math></span>. These results bring the calculated values closer to the experimental observations. The Curie temperatures, calculated using magnetic exchange constants determined from the Green function method, also highlight the impact of the Hubbard U correction. For FeO, the Curie temperature dramatically decreases from 825 K with PBEsol to 330 K with PBEsol+U. In Fe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, it is slightly reduced from 1230 K to 1180 K, while for Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>, it decreases from 1120 K to 960 K. These results underline the critical role of electron–electron correlations in accurately predicting the electronic and magnetic properties of iron oxides.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"617 ","pages":"Article 172846"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885325000770","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanosized ferromagnets hold great potential for the development of nanoscale spintronic devices. In this study, the structural, electronic and magnetic properties of FeO, Fe2O3, and Fe3O4 are investigated using density functional theory (DFT) calculations with and without Hubbard U correction. The inclusion of the Hubbard U term is crucial for accurately capturing the strong electron–electron correlations in iron oxides, which significantly affect their electronic and magnetic behaviors, including the Curie temperature. For FeO, the PBEsol calculations predict a metallic band structure, while the PBEsol+U calculations yield a band gap of 2.08 eV. Similarly, for Fe2O3, the band gap increases from 0.59 eV with PBEsol to 2.50 eV with PBEsol+U, and for Fe3O4, it changes from metallic to 1.71 eV when the Hubbard U correction is applied. The magnetic moments for Fe atoms also show a significant improvement with the inclusion of the Hubbard U correction. In FeO, the magnetic moment increases from 3.21 μB with PBEsol to 3.38 μB with PBEsol+U. For Fe2O3, the values change from 3.15 μB to 3.85 μB, and for Fe3O4, from 3.32 μB to 3.75 μB. These results bring the calculated values closer to the experimental observations. The Curie temperatures, calculated using magnetic exchange constants determined from the Green function method, also highlight the impact of the Hubbard U correction. For FeO, the Curie temperature dramatically decreases from 825 K with PBEsol to 330 K with PBEsol+U. In Fe2O3, it is slightly reduced from 1230 K to 1180 K, while for Fe3O4, it decreases from 1120 K to 960 K. These results underline the critical role of electron–electron correlations in accurately predicting the electronic and magnetic properties of iron oxides.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FeO、Fe2O3和Fe3O4的磁相互作用和居里温度的Hubbard U校正
纳米铁磁体在纳米自旋电子器件的发展中具有巨大的潜力。在本研究中,采用密度泛函理论(DFT)计算,研究了FeO、Fe2O3和Fe3O4的结构、电子和磁性能,并进行了Hubbard U校正。Hubbard U项的包含对于准确捕获铁氧化物中强电子-电子相关性至关重要,这显着影响其电子和磁性行为,包括居里温度。对于FeO, PBEsol计算预测了金属能带结构,而PBEsol+U计算得出的带隙为2.08 eV。同样,对于Fe2O3,带隙从PBEsol的0.59 eV增加到PBEsol+U的2.50 eV,对于Fe3O4,当施加Hubbard U校正时,带隙从金属变为1.71 eV。在加入Hubbard U校正后,Fe原子的磁矩也有了显著的改善。在FeO中,磁矩由PBEsol+U时的3.21 μB增加到PBEsol+U时的3.38 μB。Fe2O3的变化范围为3.15 ~ 3.85 μB, Fe3O4的变化范围为3.32 ~ 3.75 μB。这些结果使计算值更接近实验观测值。利用格林函数法确定的磁交换常数计算的居里温度,也突出了哈伯德U修正的影响。对于FeO,居里温度从PBEsol的825 K急剧下降到PBEsol+U的330 K。Fe2O3从1230 K略微降低到1180 K, Fe3O4从1120 K略微降低到960 K。这些结果强调了电子-电子相关性在准确预测氧化铁的电子和磁性能方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Magnetism and Magnetic Materials
Journal of Magnetism and Magnetic Materials 物理-材料科学:综合
CiteScore
5.30
自引率
11.10%
发文量
1149
审稿时长
59 days
期刊介绍: The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public. Main Categories: Full-length articles: Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged. In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications. The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications. The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism. Review articles: Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.
期刊最新文献
Pressure-induced magnetic transition in the quasi one-dimensional quantum halide CsTiI3 Carrier doping modulates magnetism and valley polarization in MnPX3 (X = S, Se and Te) monolayer Improved Dy diffusion efficiency and coercivity in sintered Nd0.5Ce0.5-Fe-B magnets by two-step grain boundary diffusion with PrYCu and DyH Bio-inspired polydopamine armor on carbonyl Iron via supramolecular self-assembly for anti-sedimentation and self-adaptive magnetorheological fluids Pentagon domains in FeGa alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1