{"title":"Bioelectronic therapies for chronic pain","authors":"Liam A. Matthews , Scott F. Lempka","doi":"10.1016/j.cobme.2025.100577","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic pain is a leading cause of disability worldwide. Bioelectronic treatments for chronic pain are a class of therapies that apply electrical or magnetic stimuli to the nervous system to mitigate pain. In light of the opioid crisis, these strategies have garnered significant investment in recent years due to their ability to provide non-addictive pain relief. Despite remarkable success in some patients, the majority of bioelectronic approaches are typically recommended as a last-resort therapy due to their high cost, invasiveness, and limited evidence of long-term efficacy. Furthermore, these therapies are not a panacea for many patients, often providing clinically meaningful, but incomplete pain relief. Thus, there is substantial room for improvement and innovation to both increase therapeutic efficacy and develop novel strategies and devices that enable utilization of bioelectronic therapies earlier in the chronic pain treatment continuum. Here, we review recent advances to bioelectronic treatments for chronic pain.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"34 ","pages":"Article 100577"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451125000029","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic pain is a leading cause of disability worldwide. Bioelectronic treatments for chronic pain are a class of therapies that apply electrical or magnetic stimuli to the nervous system to mitigate pain. In light of the opioid crisis, these strategies have garnered significant investment in recent years due to their ability to provide non-addictive pain relief. Despite remarkable success in some patients, the majority of bioelectronic approaches are typically recommended as a last-resort therapy due to their high cost, invasiveness, and limited evidence of long-term efficacy. Furthermore, these therapies are not a panacea for many patients, often providing clinically meaningful, but incomplete pain relief. Thus, there is substantial room for improvement and innovation to both increase therapeutic efficacy and develop novel strategies and devices that enable utilization of bioelectronic therapies earlier in the chronic pain treatment continuum. Here, we review recent advances to bioelectronic treatments for chronic pain.