Juan Huang, Jiawei Hu, Duo Zhang, Yuheng Du, Chuan-Yu Wu, Qiong Cai
{"title":"Modelling heat conduction in 3D composite cathode microstructures of all-solid-state batteries","authors":"Juan Huang, Jiawei Hu, Duo Zhang, Yuheng Du, Chuan-Yu Wu, Qiong Cai","doi":"10.1016/j.est.2025.115692","DOIUrl":null,"url":null,"abstract":"<div><div>All-solid-state lithium batteries (ASSLBs) are a promising next generation energy storage technology comparing to conventional lithium-ion batteries (LIBs). Although ASSLBs have high thermal stability, thermal degradation and thermal runaway can still occur. The thermal characteristics of the cathode of ASSLBs play a crucial role in maintaining the stability of the interface with the electrolyte. It is important to understand the thermal characteristics of ASSLBs, which is highly associated with specific microstructure geometrics of composite cathodes. Here, this paper presents a 3D lattice Boltzmann heat conduction model to simulate the effective thermal conductivity (ETC) of the multiphase solid-state cathodes, which is composed of active material LCO (LiCoO<sub>2</sub>) and solid electrolyte LLZO (Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub>), generated using the discrete element method (DEM) with different porosities, volumetric ratios, particle size ratios, and various composite tortuosities. The findings indicate that porosity, volumetric fraction, and particle size all exert the decisive factor on ETC. Tortuosity emerges as a non-negligible factor influencing thermal conductivity, highlighting the importance of microstructural optimization.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"114 ","pages":"Article 115692"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25004050","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
All-solid-state lithium batteries (ASSLBs) are a promising next generation energy storage technology comparing to conventional lithium-ion batteries (LIBs). Although ASSLBs have high thermal stability, thermal degradation and thermal runaway can still occur. The thermal characteristics of the cathode of ASSLBs play a crucial role in maintaining the stability of the interface with the electrolyte. It is important to understand the thermal characteristics of ASSLBs, which is highly associated with specific microstructure geometrics of composite cathodes. Here, this paper presents a 3D lattice Boltzmann heat conduction model to simulate the effective thermal conductivity (ETC) of the multiphase solid-state cathodes, which is composed of active material LCO (LiCoO2) and solid electrolyte LLZO (Li7La3Zr2O12), generated using the discrete element method (DEM) with different porosities, volumetric ratios, particle size ratios, and various composite tortuosities. The findings indicate that porosity, volumetric fraction, and particle size all exert the decisive factor on ETC. Tortuosity emerges as a non-negligible factor influencing thermal conductivity, highlighting the importance of microstructural optimization.
期刊介绍:
Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.