Fabrication of a carboxylesterases-activated near-infrared fluorescence probe for assisting hepatocellular carcinoma surgery in mice and clinical blood serum testing
Zhen Li , Can Hong , Wanting Zhang , Limin Guo , Junrong Cao , Longwei He , Jia Zhou , Xiubao He
{"title":"Fabrication of a carboxylesterases-activated near-infrared fluorescence probe for assisting hepatocellular carcinoma surgery in mice and clinical blood serum testing","authors":"Zhen Li , Can Hong , Wanting Zhang , Limin Guo , Junrong Cao , Longwei He , Jia Zhou , Xiubao He","doi":"10.1016/j.saa.2025.125829","DOIUrl":null,"url":null,"abstract":"<div><div>Carboxylesterases (CES) is a family of hydrolases, which are mainly localized in the endoplasmic reticulum and cytosol in cells and can catalyze the hydrolysis of carboxylic esters to generate acids and alcohols. The changes of CES level are closely related to the liver disease, such as early onset liver injury induced diabetes and advanced liver cancer. Herein, a new activatable near-infrared (NIR) fluorescent probe <strong>PCES</strong> (<strong>P</strong>robe of <strong>C</strong>arboxyl<strong>e</strong>stera<strong>s</strong>es) for imaging CES was rationally designed. The probe can not only specifically sense CES in buffer solution with a 49-fold fluorescence enhancement at 780 nm and a 2.5 mU/mL detection limit, but also can sensitively visualize CES changes with low cytotoxicity and good biocompatibility in living cells. Applying this agent, the fluctuation of CES levels was monitored under high glucose stimulation. The mechanism of ferroptosis in diabetes mellitus has also been preliminarily explored. Besides, <strong>PCES</strong> was utilized for imaging CES of hepatocellular carcinoma and effectively assisting the tumor surgical operation <em>in vivo</em>. In addition, the practical serum samples were detected from clinical patients suffered diabetes and liver cancer with the help of probe <strong>PCES</strong>, demonstrating the differentiated CES levels. With the favorable characteristics of fluorescence sensing and practicability of imaging CES in living cells, mice, and clinical serum samples, <strong>PCES</strong> can help the better understanding for the relationships of liver diseases with CES and has the potential as a useful agent for the diagnosis and treatment of clinical liver diseases.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"333 ","pages":"Article 125829"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525001350","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Carboxylesterases (CES) is a family of hydrolases, which are mainly localized in the endoplasmic reticulum and cytosol in cells and can catalyze the hydrolysis of carboxylic esters to generate acids and alcohols. The changes of CES level are closely related to the liver disease, such as early onset liver injury induced diabetes and advanced liver cancer. Herein, a new activatable near-infrared (NIR) fluorescent probe PCES (Probe of Carboxylesterases) for imaging CES was rationally designed. The probe can not only specifically sense CES in buffer solution with a 49-fold fluorescence enhancement at 780 nm and a 2.5 mU/mL detection limit, but also can sensitively visualize CES changes with low cytotoxicity and good biocompatibility in living cells. Applying this agent, the fluctuation of CES levels was monitored under high glucose stimulation. The mechanism of ferroptosis in diabetes mellitus has also been preliminarily explored. Besides, PCES was utilized for imaging CES of hepatocellular carcinoma and effectively assisting the tumor surgical operation in vivo. In addition, the practical serum samples were detected from clinical patients suffered diabetes and liver cancer with the help of probe PCES, demonstrating the differentiated CES levels. With the favorable characteristics of fluorescence sensing and practicability of imaging CES in living cells, mice, and clinical serum samples, PCES can help the better understanding for the relationships of liver diseases with CES and has the potential as a useful agent for the diagnosis and treatment of clinical liver diseases.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.