Study on seeding delay time and lag distance of automatic section control system for maize seeder

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Computers and Electronics in Agriculture Pub Date : 2025-02-11 DOI:10.1016/j.compag.2025.110068
Lin Ling , Hanqing Li , Yuejin Xiao , Weiqiang Fu , Jianjun Dong , Liwei Li , Rui Liu , Xinguang Huang , Guangwei Wu , Zhijun Meng , Bingxin Yan
{"title":"Study on seeding delay time and lag distance of automatic section control system for maize seeder","authors":"Lin Ling ,&nbsp;Hanqing Li ,&nbsp;Yuejin Xiao ,&nbsp;Weiqiang Fu ,&nbsp;Jianjun Dong ,&nbsp;Liwei Li ,&nbsp;Rui Liu ,&nbsp;Xinguang Huang ,&nbsp;Guangwei Wu ,&nbsp;Zhijun Meng ,&nbsp;Bingxin Yan","doi":"10.1016/j.compag.2025.110068","DOIUrl":null,"url":null,"abstract":"<div><div>Automatic section control (ASC) can effectively reduce the double-seeded area by controlling start and stop seeding automatically, thereby saving seeds and increasing yields. Seeding delay time (SDT) and seeding lag distance (SLD) are core factors that affect the accuracy and reliability of ASC systems. To explore the influence factors and variation patterns of SDT and SLD, this study developed an ASC system for maize seeder. The system can determine the position of each seed metering device based on a GNSS antenna, and automatically control the status of the motor of the seed metering device based on relative position between the seed metering device and the field. Theoretical analysis revealed that the angle between the seed and the seed drop point caused the start seeding delay time and start seeding lag distance (STLD) to be greater than the stop seeding delay time and stop seeding lag distance (SPLD), and the difference between the two lag distances is one seed spacing. The constructed SDT and SLD models showed that both SDT and SLD were also related to GNSS frequency and operational speed. To verify the accuracy of the model, field experiments were carried out based on GNSS frequencies (1, 5, 10 Hz) and operational speeds (4, 5, 6, 7, 8 km/h) with a seed spacing of 0.2 m. The field experiments showed that STLD was 0.703–2.191 m, and SPLD was 0.559–2.626 m, with STLD generally greater than SPLD, a difference of nearly one seed spacing. SLD was negatively correlated with GNSS frequencies and positively correlated with operational speed. GNSS frequency and operational speed had significant influences (<em>p</em> &lt; 0.001) on SLD. The correlation coefficients between SLD and the SLD model ranged from 0.54 to 0.90. Seed bouncing and seeder vibration caused a relative error of 4.51 % to 21.69 % in the SLD model. In conclusion, the SLD model can well describe the variation patterns and the significant influence of the actual SLD. The validation results of the SLD model indirectly supported the validity of the SDT model. The methods and results of this study can provide a reference for the development and optimization of ASC systems.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"232 ","pages":"Article 110068"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925001747","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic section control (ASC) can effectively reduce the double-seeded area by controlling start and stop seeding automatically, thereby saving seeds and increasing yields. Seeding delay time (SDT) and seeding lag distance (SLD) are core factors that affect the accuracy and reliability of ASC systems. To explore the influence factors and variation patterns of SDT and SLD, this study developed an ASC system for maize seeder. The system can determine the position of each seed metering device based on a GNSS antenna, and automatically control the status of the motor of the seed metering device based on relative position between the seed metering device and the field. Theoretical analysis revealed that the angle between the seed and the seed drop point caused the start seeding delay time and start seeding lag distance (STLD) to be greater than the stop seeding delay time and stop seeding lag distance (SPLD), and the difference between the two lag distances is one seed spacing. The constructed SDT and SLD models showed that both SDT and SLD were also related to GNSS frequency and operational speed. To verify the accuracy of the model, field experiments were carried out based on GNSS frequencies (1, 5, 10 Hz) and operational speeds (4, 5, 6, 7, 8 km/h) with a seed spacing of 0.2 m. The field experiments showed that STLD was 0.703–2.191 m, and SPLD was 0.559–2.626 m, with STLD generally greater than SPLD, a difference of nearly one seed spacing. SLD was negatively correlated with GNSS frequencies and positively correlated with operational speed. GNSS frequency and operational speed had significant influences (p < 0.001) on SLD. The correlation coefficients between SLD and the SLD model ranged from 0.54 to 0.90. Seed bouncing and seeder vibration caused a relative error of 4.51 % to 21.69 % in the SLD model. In conclusion, the SLD model can well describe the variation patterns and the significant influence of the actual SLD. The validation results of the SLD model indirectly supported the validity of the SDT model. The methods and results of this study can provide a reference for the development and optimization of ASC systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
期刊最新文献
Fusion of CREStereo and MobileViT-Pose for rapid measurement of cattle body size CustomBottleneck-VGGNet: Advanced tomato leaf disease identification for sustainable agriculture Yield estimation in precision viticulture by combining deep segmentation and depth-based clustering A hybrid remotely operated underwater vehicle for maintenance operations in aquaculture: Practical insights from Greek fish farms Study on seeding delay time and lag distance of automatic section control system for maize seeder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1