PyPortOptimization: A portfolio optimization pipeline leveraging multiple expected return methods, risk models, and post-optimization allocation techniques

IF 1.9 Q2 MULTIDISCIPLINARY SCIENCES MethodsX Pub Date : 2025-02-07 DOI:10.1016/j.mex.2025.103211
Rushikesh Nakhate , Harikrishnan Ramachandran , Amay Mahajan
{"title":"PyPortOptimization: A portfolio optimization pipeline leveraging multiple expected return methods, risk models, and post-optimization allocation techniques","authors":"Rushikesh Nakhate ,&nbsp;Harikrishnan Ramachandran ,&nbsp;Amay Mahajan","doi":"10.1016/j.mex.2025.103211","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents PyPortOptimization, an automated portfolio optimization library that incorporates multiple methods for expected returns, risk return modeling, and portfolio optimization. The library offers a flexible and scalable solution for constructing optimized portfolios by supporting various risk-return matrices, covariance and correlation matrices, and optimization methods. Users can customize the pipeline at every step, from data acquisition to post-processing of portfolio weights, using their own methods or selecting from predefined options. Built-in Monte Carlo simulations help assess portfolio robustness, while performance metrics such as return, risk, and Sharpe ratio are calculated to evaluate optimization results.<ul><li><span>•</span><span><div>The study compares various configured methods for each step of the portfolio optimization pipeline, including expected returns, risk-modeling and optimization techniques.</div></span></li><li><span>•</span><span><div>Custom Designed Allocator outperformed. For example, the Proportional Allocator's sharpe ratio of out-performed the expected average.</div></span></li><li><span>•</span><span><div>A caching system was implemented to optimize execution time.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103211"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125000585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents PyPortOptimization, an automated portfolio optimization library that incorporates multiple methods for expected returns, risk return modeling, and portfolio optimization. The library offers a flexible and scalable solution for constructing optimized portfolios by supporting various risk-return matrices, covariance and correlation matrices, and optimization methods. Users can customize the pipeline at every step, from data acquisition to post-processing of portfolio weights, using their own methods or selecting from predefined options. Built-in Monte Carlo simulations help assess portfolio robustness, while performance metrics such as return, risk, and Sharpe ratio are calculated to evaluate optimization results.
  • The study compares various configured methods for each step of the portfolio optimization pipeline, including expected returns, risk-modeling and optimization techniques.
  • Custom Designed Allocator outperformed. For example, the Proportional Allocator's sharpe ratio of out-performed the expected average.
  • A caching system was implemented to optimize execution time.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PyPortOptimization:利用多种预期收益方法、风险模型和优化后配置技术的投资组合优化管道
本文介绍了PyPortOptimization,这是一个自动化的投资组合优化库,它包含了预期回报、风险回报建模和投资组合优化的多种方法。该库通过支持各种风险回报矩阵、协方差和相关矩阵以及优化方法,为构建优化投资组合提供了灵活和可扩展的解决方案。用户可以自定义管道的每一步,从数据采集到投资组合权重的后处理,使用自己的方法或从预定义的选项中进行选择。内置的蒙特卡罗模拟有助于评估投资组合的稳健性,同时计算诸如回报,风险和夏普比率等性能指标以评估优化结果。•该研究比较了投资组合优化管道中每个步骤的各种配置方法,包括预期收益、风险建模和优化技术。•自定义设计的分配器优于。例如,比例分配器的夏普比率优于预期平均值。•实现缓存系统以优化执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
期刊最新文献
Defining a clinical protocol using a computerized central visual processing battery USE-SVI: A reproducible pipeline for sampling, acquiring, and stitching Street View imagery to support urban analytics Combination of partial least square structural equation modeling scheme of principal component analysis with importance performance analysis Graph neural network-based mutation-aware regression test ordering using code dependency graphs and execution traces Construction and applications of iterative methods for finding approximate solutions of nonlinear equations having unknown zeros of multiplicity with fractal geometry and dynamical behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1