{"title":"IM- LTS: An Integrated Model for Lung Tumor Segmentation using Neural Networks and IoMT","authors":"Jayapradha J , Su-Cheng Haw , Naveen Palanichamy , Kok-Why Ng , Senthil Kumar Thillaigovindhan","doi":"10.1016/j.mex.2025.103201","DOIUrl":null,"url":null,"abstract":"<div><div>In recent days, Internet of Medical Things (IoMT) and Deep Learning (DL) techniques are broadly used in medical data processing in decision-making. A lung tumour, one of the most dangerous medical diseases, requires early diagnosis with a higher precision rate. With that concern, this work aims to develop an Integrated Model (IM- LTS) for Lung Tumor Segmentation using Neural Networks (NN) and the Internet of Medical Things (IoMT). The model integrates two architectures, MobileNetV2 and U-NET, for classifying the input lung data. The input CT lung images are pre-processed using Z-score Normalization. The semantic features of lung images are extracted based on texture, intensity, and shape to provide information to the training network.<ul><li><span>•</span><span><div>In this work, the transfer learning technique is incorporated, and the pre-trained NN was used as an encoder for the U-NET model for segmentation. Furthermore, Support Vector Machine is used here to classify input lung data as benign and malignant.</div></span></li><li><span>•</span><span><div>The results are measured based on the metrics such as, specificity, sensitivity, precision, accuracy and F-Score, using the data from benchmark datasets. Compared to the existing lung tumor segmentation and classification models, the proposed model provides better results and evidence for earlier disease diagnosis.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103201"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125000494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In recent days, Internet of Medical Things (IoMT) and Deep Learning (DL) techniques are broadly used in medical data processing in decision-making. A lung tumour, one of the most dangerous medical diseases, requires early diagnosis with a higher precision rate. With that concern, this work aims to develop an Integrated Model (IM- LTS) for Lung Tumor Segmentation using Neural Networks (NN) and the Internet of Medical Things (IoMT). The model integrates two architectures, MobileNetV2 and U-NET, for classifying the input lung data. The input CT lung images are pre-processed using Z-score Normalization. The semantic features of lung images are extracted based on texture, intensity, and shape to provide information to the training network.
•
In this work, the transfer learning technique is incorporated, and the pre-trained NN was used as an encoder for the U-NET model for segmentation. Furthermore, Support Vector Machine is used here to classify input lung data as benign and malignant.
•
The results are measured based on the metrics such as, specificity, sensitivity, precision, accuracy and F-Score, using the data from benchmark datasets. Compared to the existing lung tumor segmentation and classification models, the proposed model provides better results and evidence for earlier disease diagnosis.