Digital mapping of soil organic carbon in a plain area based on time-series features

IF 7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecological Indicators Pub Date : 2025-02-01 DOI:10.1016/j.ecolind.2025.113215
Kun Yan , Decai Wang , Yongkang Feng , Siyu Hou , Yamei Zhang , Huimin Yang
{"title":"Digital mapping of soil organic carbon in a plain area based on time-series features","authors":"Kun Yan ,&nbsp;Decai Wang ,&nbsp;Yongkang Feng ,&nbsp;Siyu Hou ,&nbsp;Yamei Zhang ,&nbsp;Huimin Yang","doi":"10.1016/j.ecolind.2025.113215","DOIUrl":null,"url":null,"abstract":"<div><div>Improving the accuracy of digital soil organic carbon (SOC) mapping in plain areas is important for meeting the needs of agricultural development and environmental protection. Utilizing time-series environmental factors is thought to be helpful in digital soil mapping (DSM) of SOC, which is a current research hotspot. This study focused on the DSM of SOC in Fengqiu County, China, using terrain, climate, single-time ecological factors, and time-series features of time-series ecological factors as environmental covariates to investigate whether time-series environmental covariates could improve the accuracy in a plain area. SOC prediction models were established using random forests (RF), backpropagation neural networks (BP), and support vector machines (SVM). The results showed that ecological factors such as normalized difference vegetation index (NDVI) normalized difference built-up index (NDBSI), drought, and humidity indices, along with distance from rivers, played a dominant role in digital SOC mapping. The relative importance of the time-series features of the ecological factors was higher than that of the single-time-point vegetation indices. Introducing the time-series features of ecological factors resulted in a decrease in the mean error (ME) and root mean square error (RMSE), whereas the coefficient of determination (R<sup>2</sup>) and concordance correlation coefficient (CCC) showed increasing trends across the different models. Comparing the various environmental variable screening methods, the Boruta algorithm achieved the most significant improvement in model accuracy. The RFSTB (RF + Conventional variables + Time-series variables + Boruta algorithm) model was identified as the optimal model, with R<sup>2</sup> increasing by 65.45 % and RMSE decreasing by 47.12 %. This study introduces new environmental covariates for SOC mapping and provides new insights into digital mapping of SOC in plain areas.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"171 ","pages":"Article 113215"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X2500144X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the accuracy of digital soil organic carbon (SOC) mapping in plain areas is important for meeting the needs of agricultural development and environmental protection. Utilizing time-series environmental factors is thought to be helpful in digital soil mapping (DSM) of SOC, which is a current research hotspot. This study focused on the DSM of SOC in Fengqiu County, China, using terrain, climate, single-time ecological factors, and time-series features of time-series ecological factors as environmental covariates to investigate whether time-series environmental covariates could improve the accuracy in a plain area. SOC prediction models were established using random forests (RF), backpropagation neural networks (BP), and support vector machines (SVM). The results showed that ecological factors such as normalized difference vegetation index (NDVI) normalized difference built-up index (NDBSI), drought, and humidity indices, along with distance from rivers, played a dominant role in digital SOC mapping. The relative importance of the time-series features of the ecological factors was higher than that of the single-time-point vegetation indices. Introducing the time-series features of ecological factors resulted in a decrease in the mean error (ME) and root mean square error (RMSE), whereas the coefficient of determination (R2) and concordance correlation coefficient (CCC) showed increasing trends across the different models. Comparing the various environmental variable screening methods, the Boruta algorithm achieved the most significant improvement in model accuracy. The RFSTB (RF + Conventional variables + Time-series variables + Boruta algorithm) model was identified as the optimal model, with R2 increasing by 65.45 % and RMSE decreasing by 47.12 %. This study introduces new environmental covariates for SOC mapping and provides new insights into digital mapping of SOC in plain areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Indicators
Ecological Indicators 环境科学-环境科学
CiteScore
11.80
自引率
8.70%
发文量
1163
审稿时长
78 days
期刊介绍: The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published. • All aspects of ecological and environmental indicators and indices. • New indicators, and new approaches and methods for indicator development, testing and use. • Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources. • Analysis and research of resource, system- and scale-specific indicators. • Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs. • How research indicators can be transformed into direct application for management purposes. • Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators. • Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.
期刊最新文献
Assessing the impact of China’s forest chief system on forest ecological security: An integrated ArcGIS and econometric analysis Expanding the European water Framework Directive indicators to address long-term climate change impacts on lakes using mechanistic lake models Temporal analyses of global suitability distribution for fall armyworm based on Multiple factors Linking the life stages of fish into a habitat-ecological flow assessment scheme under climate change and human activities Spatial-temporal differentiation and influencing factors of ecosystem health in Three-River-Source national Park
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1