EEGConvNeXt: A novel convolutional neural network model for automated detection of Alzheimer's Disease and Frontotemporal Dementia using EEG signals

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer methods and programs in biomedicine Pub Date : 2025-02-08 DOI:10.1016/j.cmpb.2025.108652
Madhav Acharya , Ravinesh C Deo , Prabal Datta Barua , Aruna Devi , Xiaohui Tao
{"title":"EEGConvNeXt: A novel convolutional neural network model for automated detection of Alzheimer's Disease and Frontotemporal Dementia using EEG signals","authors":"Madhav Acharya ,&nbsp;Ravinesh C Deo ,&nbsp;Prabal Datta Barua ,&nbsp;Aruna Devi ,&nbsp;Xiaohui Tao","doi":"10.1016/j.cmpb.2025.108652","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objective</h3><div>Deep learning models have gained widespread adoption in healthcare for accurate diagnosis through the analysis of brain signals. Neurodegenerative disorders like Alzheimer's Disease (AD) and Frontotemporal Dementia (FD) are increasingly prevalent due to age-related brain volume reduction. Despite advances, existing models often lack comprehensive multi-class classification capabilities and are computationally expensive. This study addresses these gaps by proposing EEGConvNeXt, a novel convolutional neural network (CNN) model for detecting AD and FD using electroencephalogram (EEG) signals with high accuracy.</div></div><div><h3>Materials and method</h3><div>In this research, we employ an open-access EEG signal public dataset containing three distinct classes: AD, FD, and control subjects. We then constructed a newly proposed EEGConvNeXt model comprised of a 2-dimensional CNN algorithm that firstly converts the EEG signals into power spectrogram-based images. Secondly, these images were used as input for the proposed EEGConvNeXt model for automated classification of AD, FD, and a control outcome. The proposed EEGConvNeXt model is therefore a lightweight model that contributes to a new image classification CNN structure based on the transformer model with four primary stages: a stem, a main model, downsampling, and an output stem.</div></div><div><h3>Results</h3><div>The EEGConvNeXt model achieved a classification accuracy of ∼95.70% for three-class detection (AD, FD, and control), validated using a hold-out strategy. Binary classification cases, such as AD versus FD and FD versus control, achieved accuracies exceeding 98%, demonstrating the model's robustness across scenarios.</div></div><div><h3>Conclusions</h3><div>The proposed EEGConvNeXt model demonstrates high classification performance with a lightweight architecture suitable for deployment in resource-constrained settings. While the study establishes a novel framework for AD and FD detection, limitations include reliance on a relatively small dataset and the need for further validation on diverse populations. Future research should focus on expanding datasets, optimizing architecture, and exploring additional neurological disorders to enhance the model's utility in clinical applications.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"262 ","pages":"Article 108652"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725000690","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective

Deep learning models have gained widespread adoption in healthcare for accurate diagnosis through the analysis of brain signals. Neurodegenerative disorders like Alzheimer's Disease (AD) and Frontotemporal Dementia (FD) are increasingly prevalent due to age-related brain volume reduction. Despite advances, existing models often lack comprehensive multi-class classification capabilities and are computationally expensive. This study addresses these gaps by proposing EEGConvNeXt, a novel convolutional neural network (CNN) model for detecting AD and FD using electroencephalogram (EEG) signals with high accuracy.

Materials and method

In this research, we employ an open-access EEG signal public dataset containing three distinct classes: AD, FD, and control subjects. We then constructed a newly proposed EEGConvNeXt model comprised of a 2-dimensional CNN algorithm that firstly converts the EEG signals into power spectrogram-based images. Secondly, these images were used as input for the proposed EEGConvNeXt model for automated classification of AD, FD, and a control outcome. The proposed EEGConvNeXt model is therefore a lightweight model that contributes to a new image classification CNN structure based on the transformer model with four primary stages: a stem, a main model, downsampling, and an output stem.

Results

The EEGConvNeXt model achieved a classification accuracy of ∼95.70% for three-class detection (AD, FD, and control), validated using a hold-out strategy. Binary classification cases, such as AD versus FD and FD versus control, achieved accuracies exceeding 98%, demonstrating the model's robustness across scenarios.

Conclusions

The proposed EEGConvNeXt model demonstrates high classification performance with a lightweight architecture suitable for deployment in resource-constrained settings. While the study establishes a novel framework for AD and FD detection, limitations include reliance on a relatively small dataset and the need for further validation on diverse populations. Future research should focus on expanding datasets, optimizing architecture, and exploring additional neurological disorders to enhance the model's utility in clinical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
期刊最新文献
Editorial Board Towards clinical prediction with transparency: An explainable AI approach to survival modelling in residential aged care DuDo-RAC: Dual-domain optimization for ring artifact correction in photon counting CT Neuradicon: Operational representation learning of neuroimaging reports pFedBCC: Personalizing Federated multi-target domain adaptive segmentation via Bi-pole Collaborative Calibration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1