{"title":"Comparison of clinical metagenomics with 16S rDNA Sanger sequencing for the bacteriological diagnosis of culture-negative samples","authors":"Camille d’Humières , Skerdi Haviari , Marie Petitjean , Laurène Deconinck , Signara Gueye , Nathan Peiffer-Smadja , Lynda Chalal , Naima Beldjoudi , Geoffrey Rossi , Yann Nguyen , Charles Burdet , Ségolène Perrineau , Diane Le Pluart , Roza Rahli , Michael Thy , Piotr Szychowiak , Xavier Lescure , Véronique Leflon-Guibout , Victoire de Lastours , Etienne Ruppé","doi":"10.1016/j.ijmm.2025.151650","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Currently, diagnosis of bacterial infections is based on culture, possibly followed by the amplification and sequencing (Sanger method) of the 16S rDNA - encoding gene when cultures are negative. Clinical metagenomics (CMg), i.e. the sequencing of a sample’s entire nucleic acids, may allow for the identification of bacteria not detected by conventional methods. Here, we tested the performance of CMg compared to 16S rDNA sequencing (Sanger) in 50 patients with suspected bacterial infection but negative cultures.</div></div><div><h3>Methods</h3><div>This is a prospective cohort study. Fifty patients (73 samples) with negative culture and a 16S rDNA sequencing demand (Sanger) were recruited from two sites. On the same samples, CMg (Illumina NextSeq) was also performed and compared to 16S rDNA Sanger sequencing. Bacteria were identified using MetaPhlAn4.</div></div><div><h3>Results</h3><div>Among the 73 samples, 20 (27 %, 17 patients) had a clinically relevant 16S rDNA Sanger sequencing result (used for patient management) while 11 (15 %, 9 patients) were considered contaminants. At the patient level, the sensitivity of CMg was 70 % (12/17) compared to 16S rDNA. In samples negative for 16S rDNA Sanger sequencing (n = 53), CMg identified clinically-relevant bacteria in 10 samples (19 %, 10 patients) with 14 additional bacteria.</div></div><div><h3>Conclusions</h3><div>CMg was not 100 % sensitive when compared to 16S, supporting that it may not be a suitable replacement. However, CMg did find additional bacteria in samples negative for 16S rDNA Sanger. CMg could therefore be positioned as a complementary to 16S rDNA Sanger sequencing.</div></div>","PeriodicalId":50312,"journal":{"name":"International Journal of Medical Microbiology","volume":"318 ","pages":"Article 151650"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Microbiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1438422125000062","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Currently, diagnosis of bacterial infections is based on culture, possibly followed by the amplification and sequencing (Sanger method) of the 16S rDNA - encoding gene when cultures are negative. Clinical metagenomics (CMg), i.e. the sequencing of a sample’s entire nucleic acids, may allow for the identification of bacteria not detected by conventional methods. Here, we tested the performance of CMg compared to 16S rDNA sequencing (Sanger) in 50 patients with suspected bacterial infection but negative cultures.
Methods
This is a prospective cohort study. Fifty patients (73 samples) with negative culture and a 16S rDNA sequencing demand (Sanger) were recruited from two sites. On the same samples, CMg (Illumina NextSeq) was also performed and compared to 16S rDNA Sanger sequencing. Bacteria were identified using MetaPhlAn4.
Results
Among the 73 samples, 20 (27 %, 17 patients) had a clinically relevant 16S rDNA Sanger sequencing result (used for patient management) while 11 (15 %, 9 patients) were considered contaminants. At the patient level, the sensitivity of CMg was 70 % (12/17) compared to 16S rDNA. In samples negative for 16S rDNA Sanger sequencing (n = 53), CMg identified clinically-relevant bacteria in 10 samples (19 %, 10 patients) with 14 additional bacteria.
Conclusions
CMg was not 100 % sensitive when compared to 16S, supporting that it may not be a suitable replacement. However, CMg did find additional bacteria in samples negative for 16S rDNA Sanger. CMg could therefore be positioned as a complementary to 16S rDNA Sanger sequencing.
期刊介绍:
Pathogen genome sequencing projects have provided a wealth of data that need to be set in context to pathogenicity and the outcome of infections. In addition, the interplay between a pathogen and its host cell has become increasingly important to understand and interfere with diseases caused by microbial pathogens. IJMM meets these needs by focussing on genome and proteome analyses, studies dealing with the molecular mechanisms of pathogenicity and the evolution of pathogenic agents, the interactions between pathogens and host cells ("cellular microbiology"), and molecular epidemiology. To help the reader keeping up with the rapidly evolving new findings in the field of medical microbiology, IJMM publishes original articles, case studies and topical, state-of-the-art mini-reviews in a well balanced fashion. All articles are strictly peer-reviewed. Important topics are reinforced by 2 special issues per year dedicated to a particular theme. Finally, at irregular intervals, current opinions on recent or future developments in medical microbiology are presented in an editorial section.