Misti D. Finton , Roger Meisal , Davide Porcellato , Lin T. Brandal , Bjørn-Arne Lindstedt
{"title":"Comparative genomics of clinical hybrid Escherichia coli strains in Norway","authors":"Misti D. Finton , Roger Meisal , Davide Porcellato , Lin T. Brandal , Bjørn-Arne Lindstedt","doi":"10.1016/j.ijmm.2025.151651","DOIUrl":null,"url":null,"abstract":"<div><div>The global rise of hybrid <em>Escherichia coli</em> (<em>E. coli</em>) is a major public health concern, as enhanced virulence from multiple pathotypes complicates the traditional <em>E. coli</em> classification system and challenges clinical diagnostics. Hybrid strains are particularly concerning as they can infect both intestinal and extraintestinal sites, complicating treatment and increasing the risk of severe disease. This study analyzed virulence-associated genes (VAGs) in 13 <em>E. coli</em> isolates from fecal samples of patients with symptoms of gastrointestinal (GI) infection in Norwegian hospitals and clinics. Whole genome sequencing (WGS) was conducted using Oxford Nanopore’s MinION and Illumina’s MiSeq platforms. Eleven strains harbored molecular diagnostic markers of atypical enteropathogenic <em>E. coli</em> (aEPEC), enteroinvasive <em>E. coli</em> (EIEC), Shiga toxin-producing <em>E. coli</em> (STEC), enterotoxigenic <em>E. coli</em> (ETEC), or typical enteropathogenic <em>E. coli</em> (tEPEC). Two of those isolates were identified as triple intestinal hybrids with molecular diagnostic markers for aEPEC, EIEC, and STEC. Notably, two isolates lacked any IPEC-specific molecular diagnostic markers, yet were suspected of causing the patient’s GI infection. Furthermore, genes associated with extraintestinal pathogenic <em>E. coli</em> (ExPEC)—including adhesins, toxins, protectins, siderophores, iron acquisition systems, and invasins—were identified in all the isolates. Thus, most of the isolates were classified as hybrid aEPEC/ExPEC, STEC/ExPEC, tEPEC/ExPEC, or aEPEC/EIEC/STEC/ExPEC. These findings emphasize the genomic plasticity of <em>E. coli</em> and highlight the need to revise the classification system for enteric pathogens.</div></div>","PeriodicalId":50312,"journal":{"name":"International Journal of Medical Microbiology","volume":"318 ","pages":"Article 151651"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Microbiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1438422125000074","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The global rise of hybrid Escherichia coli (E. coli) is a major public health concern, as enhanced virulence from multiple pathotypes complicates the traditional E. coli classification system and challenges clinical diagnostics. Hybrid strains are particularly concerning as they can infect both intestinal and extraintestinal sites, complicating treatment and increasing the risk of severe disease. This study analyzed virulence-associated genes (VAGs) in 13 E. coli isolates from fecal samples of patients with symptoms of gastrointestinal (GI) infection in Norwegian hospitals and clinics. Whole genome sequencing (WGS) was conducted using Oxford Nanopore’s MinION and Illumina’s MiSeq platforms. Eleven strains harbored molecular diagnostic markers of atypical enteropathogenic E. coli (aEPEC), enteroinvasive E. coli (EIEC), Shiga toxin-producing E. coli (STEC), enterotoxigenic E. coli (ETEC), or typical enteropathogenic E. coli (tEPEC). Two of those isolates were identified as triple intestinal hybrids with molecular diagnostic markers for aEPEC, EIEC, and STEC. Notably, two isolates lacked any IPEC-specific molecular diagnostic markers, yet were suspected of causing the patient’s GI infection. Furthermore, genes associated with extraintestinal pathogenic E. coli (ExPEC)—including adhesins, toxins, protectins, siderophores, iron acquisition systems, and invasins—were identified in all the isolates. Thus, most of the isolates were classified as hybrid aEPEC/ExPEC, STEC/ExPEC, tEPEC/ExPEC, or aEPEC/EIEC/STEC/ExPEC. These findings emphasize the genomic plasticity of E. coli and highlight the need to revise the classification system for enteric pathogens.
期刊介绍:
Pathogen genome sequencing projects have provided a wealth of data that need to be set in context to pathogenicity and the outcome of infections. In addition, the interplay between a pathogen and its host cell has become increasingly important to understand and interfere with diseases caused by microbial pathogens. IJMM meets these needs by focussing on genome and proteome analyses, studies dealing with the molecular mechanisms of pathogenicity and the evolution of pathogenic agents, the interactions between pathogens and host cells ("cellular microbiology"), and molecular epidemiology. To help the reader keeping up with the rapidly evolving new findings in the field of medical microbiology, IJMM publishes original articles, case studies and topical, state-of-the-art mini-reviews in a well balanced fashion. All articles are strictly peer-reviewed. Important topics are reinforced by 2 special issues per year dedicated to a particular theme. Finally, at irregular intervals, current opinions on recent or future developments in medical microbiology are presented in an editorial section.