Maozhi Wang;Shu-Hua Chen;Jun Feng;Wenxi Xu;Daming Wang
{"title":"Identification of Spectrally Similar Materials From Multispectral Imagery Based on Condition Number of Matrix","authors":"Maozhi Wang;Shu-Hua Chen;Jun Feng;Wenxi Xu;Daming Wang","doi":"10.1109/JSTARS.2025.3532816","DOIUrl":null,"url":null,"abstract":"Identification of spectrally similar materials from multispectral remote sensing (RS) imagery with only several bands is an important issue that challenges comprehensive applications of the RS of surface characteristics. This study proposes a new method to identify spectrally similar materials from these types of imagery. The method is constructed based on the theory of condition number of matrix, and a theorem is proven as the foundation of the designed identification algorithm. Mathematically, the motivation behind designing this new algorithm is to decrease the condition number of the matrix for a linear system and, by doing so, to change an ill-conditioned system to a well-conditioned one. Technically, this new method achieves the purpose by adding supplementary features to all the original spectra including similar materials, which can be further used as indicative signatures to identify these materials. Thus, the proposed method is named a condition number-based method with supplementary features (SF-CNM). The threshold scheme and supplementary features are two main novelty techniques to ensure the uniqueness and accuracy of the proposed SF-CNM for specified samples. The results for a case study to identify water, ice, snow, shadow, and other materials from Landsat 8 OLI data indicate that SF-CNM can identify the materials specified by the given samples successfully and accurately and that SF-CNM significantly outperforms those of spectral angle mapper algorithm, Mahalanobis classifier, maximum likelihood, and artificial neural network, and produces the performance similar to, even slightly better than that of support vector machine.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"4751-4766"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10849635","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10849635/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Identification of spectrally similar materials from multispectral remote sensing (RS) imagery with only several bands is an important issue that challenges comprehensive applications of the RS of surface characteristics. This study proposes a new method to identify spectrally similar materials from these types of imagery. The method is constructed based on the theory of condition number of matrix, and a theorem is proven as the foundation of the designed identification algorithm. Mathematically, the motivation behind designing this new algorithm is to decrease the condition number of the matrix for a linear system and, by doing so, to change an ill-conditioned system to a well-conditioned one. Technically, this new method achieves the purpose by adding supplementary features to all the original spectra including similar materials, which can be further used as indicative signatures to identify these materials. Thus, the proposed method is named a condition number-based method with supplementary features (SF-CNM). The threshold scheme and supplementary features are two main novelty techniques to ensure the uniqueness and accuracy of the proposed SF-CNM for specified samples. The results for a case study to identify water, ice, snow, shadow, and other materials from Landsat 8 OLI data indicate that SF-CNM can identify the materials specified by the given samples successfully and accurately and that SF-CNM significantly outperforms those of spectral angle mapper algorithm, Mahalanobis classifier, maximum likelihood, and artificial neural network, and produces the performance similar to, even slightly better than that of support vector machine.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.