{"title":"IAE-CDNet: A Remote Sensing Change Detection Network for Buildings With Interactive Attention-Enhanced","authors":"Zhaoyang Han;Linlin Zhang;Qingyan Meng;Chongchang Wang;Wenxu Shi;Maofan Zhao","doi":"10.1109/JSTARS.2025.3532783","DOIUrl":null,"url":null,"abstract":"Currently, the development of deep learning has had a positive impact on remote sensing image change detection tasks, but many current methods still face challenges in effectively processing global and local features, especially in the task of building change detection in high-resolution images containing complex scenes. The extraction of target-related features is typically difficult, and changes in scene conditions further increase the difficulty of identifying real changes. To address these challenges, we propose the interactive attention-enhanced change detection network (IAE-CDNet). We design the local–global interaction attention module, which effectively establishes the interactive relationship between local and global features and realizes information interaction between branches, enhancing the ability to obtain architectural detail features. Additionally, our change perception attention enhancement module enhances the feature perception ability of the real change area through the joint action of the internal comprehensive feature extractor and the fusion attention mechanism. We conduct extensive experiments on three datasets. Results indicate that the evaluation indicators and performance of our IAE-CDNet are better than those of other state-of-the-art methods.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"5063-5081"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10849815","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10849815/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, the development of deep learning has had a positive impact on remote sensing image change detection tasks, but many current methods still face challenges in effectively processing global and local features, especially in the task of building change detection in high-resolution images containing complex scenes. The extraction of target-related features is typically difficult, and changes in scene conditions further increase the difficulty of identifying real changes. To address these challenges, we propose the interactive attention-enhanced change detection network (IAE-CDNet). We design the local–global interaction attention module, which effectively establishes the interactive relationship between local and global features and realizes information interaction between branches, enhancing the ability to obtain architectural detail features. Additionally, our change perception attention enhancement module enhances the feature perception ability of the real change area through the joint action of the internal comprehensive feature extractor and the fusion attention mechanism. We conduct extensive experiments on three datasets. Results indicate that the evaluation indicators and performance of our IAE-CDNet are better than those of other state-of-the-art methods.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.