Effects of whey protein-inulin conjugates with varying degrees of glycosylation on hepatic antioxidant capacity, immunomodulation and gut microbiota in mice.
Shunyi Zhu, Xing Li, Shixuan Zhang, Ziwen Cai, Jianhao Sun, Qi Ju, Diru Liu
{"title":"Effects of whey protein-inulin conjugates with varying degrees of glycosylation on hepatic antioxidant capacity, immunomodulation and gut microbiota in mice.","authors":"Shunyi Zhu, Xing Li, Shixuan Zhang, Ziwen Cai, Jianhao Sun, Qi Ju, Diru Liu","doi":"10.1039/d4fo05846a","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, whey protein isolate-inulin (WPI-In) conjugates with varying degrees of glycosylation (DG) were prepared, characterized, and examined for their potential immunomodulatory effects and regulation of gut microbiota in mice. The data indicated that an increase in DG significantly affects the microstructure and functionalities of WPI-In conjugates. The WPI-In conjugates with high DG promoted the growth and development of the thymus while altering gut microbiota composition by increasing the relative abundance of <i>Bacteroidetes</i> and reducing that of <i>Firmicutes</i>. Additionally, the WPI-In conjugates enhanced liver antioxidant capacity and the secretion of immunoglobulin G, and elevated levels of anti-inflammatory cytokines (IL-4 and IL-2), while decreasing pro-inflammatory cytokine (TNF-α) content in serum. Spearman correlation analysis suggested that the enhancement of liver antioxidant capacity and regulation of immune-related indicators may be associated with the gut microbiota altered by WPI-In conjugates. Therefore, WPI-In conjugates demonstrate beneficial properties, indicating potential applications in food systems.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo05846a","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, whey protein isolate-inulin (WPI-In) conjugates with varying degrees of glycosylation (DG) were prepared, characterized, and examined for their potential immunomodulatory effects and regulation of gut microbiota in mice. The data indicated that an increase in DG significantly affects the microstructure and functionalities of WPI-In conjugates. The WPI-In conjugates with high DG promoted the growth and development of the thymus while altering gut microbiota composition by increasing the relative abundance of Bacteroidetes and reducing that of Firmicutes. Additionally, the WPI-In conjugates enhanced liver antioxidant capacity and the secretion of immunoglobulin G, and elevated levels of anti-inflammatory cytokines (IL-4 and IL-2), while decreasing pro-inflammatory cytokine (TNF-α) content in serum. Spearman correlation analysis suggested that the enhancement of liver antioxidant capacity and regulation of immune-related indicators may be associated with the gut microbiota altered by WPI-In conjugates. Therefore, WPI-In conjugates demonstrate beneficial properties, indicating potential applications in food systems.
期刊介绍:
Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.