Eriodictyol 5-O-methyl ether inhibits prostate cancer progression through targeting STAT3 signaling and inducing apoptosis and paraptosis

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Archives of biochemistry and biophysics Pub Date : 2025-02-07 DOI:10.1016/j.abb.2025.110331
Min Hee Yang , Ninh The Son , Jairo Kenupp Bastos , Nguyen Dinh Luyen , Nguyen Ngoc Linh , Kwang Seok Ahn
{"title":"Eriodictyol 5-O-methyl ether inhibits prostate cancer progression through targeting STAT3 signaling and inducing apoptosis and paraptosis","authors":"Min Hee Yang ,&nbsp;Ninh The Son ,&nbsp;Jairo Kenupp Bastos ,&nbsp;Nguyen Dinh Luyen ,&nbsp;Nguyen Ngoc Linh ,&nbsp;Kwang Seok Ahn","doi":"10.1016/j.abb.2025.110331","DOIUrl":null,"url":null,"abstract":"<div><div>Prostate cancer ranks as one of the most prevalent cancers among men and is a major cause of cancer-related mortality globally This study aims to elucidate the molecular mechanisms underlying the anti-cancer effects of eriodictyol 5-<em>O</em>-methyl ether (ERIO) on prostate cancer cells, focusing on its impact on STAT3 signaling, apoptosis, and paraptosis. ERIO exhibited significant cytotoxicity against DU145, PC-3, and LNCaP cells. It suppressed constitutive and IL-6-induced STAT3 activation by inhibiting the phosphorylation of JAK1, JAK2, and Src kinases. ERIO upregulated SHP-2 expression, leading to the dephosphorylation of STAT3. ERIO induced apoptosis, evidenced by increased caspase-3 and PARP cleavage, and paraptosis, characterized by increased ROS production, decreased mitochondrial membrane potential, and ER stress. The antioxidant NAC reversed the effects of ERIO, highlighting the importance of oxidative stress in its anti-cancer activity. ERIO effectively inhibited prostate cancer cell growth by targeting STAT3 signaling and inducing both apoptosis and paraptosis. These findings suggest that ERIO has significant therapeutic potential for prostate cancer treatment and warrant further investigation in <em>in vivo</em> and clinical studies.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"766 ","pages":"Article 110331"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000398612500044X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Prostate cancer ranks as one of the most prevalent cancers among men and is a major cause of cancer-related mortality globally This study aims to elucidate the molecular mechanisms underlying the anti-cancer effects of eriodictyol 5-O-methyl ether (ERIO) on prostate cancer cells, focusing on its impact on STAT3 signaling, apoptosis, and paraptosis. ERIO exhibited significant cytotoxicity against DU145, PC-3, and LNCaP cells. It suppressed constitutive and IL-6-induced STAT3 activation by inhibiting the phosphorylation of JAK1, JAK2, and Src kinases. ERIO upregulated SHP-2 expression, leading to the dephosphorylation of STAT3. ERIO induced apoptosis, evidenced by increased caspase-3 and PARP cleavage, and paraptosis, characterized by increased ROS production, decreased mitochondrial membrane potential, and ER stress. The antioxidant NAC reversed the effects of ERIO, highlighting the importance of oxidative stress in its anti-cancer activity. ERIO effectively inhibited prostate cancer cell growth by targeting STAT3 signaling and inducing both apoptosis and paraptosis. These findings suggest that ERIO has significant therapeutic potential for prostate cancer treatment and warrant further investigation in in vivo and clinical studies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
期刊最新文献
Editorial Board Structural and kinetic analysis of distinct active and inactive states of Burkholderia cenocepacia orotate phosphoribosyltransferase. Annealing synchronizes the TOM complex with Tom7 in a new orientation Eriodictyol 5-O-methyl ether inhibits prostate cancer progression through targeting STAT3 signaling and inducing apoptosis and paraptosis PPIA enhances cell growth and metastasis through CD147 in oral cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1