Molecular Structure and Mass Spectral Data Quality-Driven Processing of High-Resolution Mass Spectrometry for Quantitative Analysis.

IF 1.8 3区 化学 Q4 BIOCHEMICAL RESEARCH METHODS Rapid Communications in Mass Spectrometry Pub Date : 2025-02-10 DOI:10.1002/rcm.10000
Fabien Fontaine, Luca Morettoni, Ken Anderson, Bernard Choi, Ismael Zamora, Kevin P Bateman
{"title":"Molecular Structure and Mass Spectral Data Quality-Driven Processing of High-Resolution Mass Spectrometry for Quantitative Analysis.","authors":"Fabien Fontaine, Luca Morettoni, Ken Anderson, Bernard Choi, Ismael Zamora, Kevin P Bateman","doi":"10.1002/rcm.10000","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale: </strong>LC-MS-based quantification is traditionally performed using selected or multiple reaction monitoring (SRM/MRM) acquisition functions on triple quadrupole (QQQ) instruments resulting in both high sensitivity and selectivity. This workflow requires a previously identified reaction or transition from a precursor ion to a fragment ion to be monitored to obtain the needed selectivity for the compound of interest. High-resolution mass spectrometry (HRMS) has long sought to be a viable alternative for quantitatipve workflows but has been unable to broadly compete, mainly due to the lack of suitable data processing software.</p><p><strong>Methods: </strong>The approach we developed agnostically and automatically identifies all ions related to the compound being analyzed in both the MS and MSMS data, acquired with data-dependent or data-independent methods. The algorithm automatically selects optimal parameters (ion extraction window, ions to sum, etc.) to provide the best overall method to meet the acceptance criteria defined by the user (accuracy/precision).</p><p><strong>Results: </strong>The results obtained are directly compared to QQQ data collected from the same set of samples and show that the automated HRMS approach is as good as and, in some cases, better than the traditional QQQ approach in terms of selectivity, sensitivity, and dynamic range.</p><p><strong>Conclusions: </strong>This new methodology enables the use of generic methods for data collection for quantitative analysis using high-resolution mass spectrometry. With this approach, data collection is faster, and the processing algorithm provides quality equal to or better than the current QQQ methodology. This enables an overall reduction in cycle time and improved assay performance versus current HRMS-based quantitative analysis as well as traditional QQQ workflows.</p>","PeriodicalId":225,"journal":{"name":"Rapid Communications in Mass Spectrometry","volume":" ","pages":"e10000"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Communications in Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/rcm.10000","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Rationale: LC-MS-based quantification is traditionally performed using selected or multiple reaction monitoring (SRM/MRM) acquisition functions on triple quadrupole (QQQ) instruments resulting in both high sensitivity and selectivity. This workflow requires a previously identified reaction or transition from a precursor ion to a fragment ion to be monitored to obtain the needed selectivity for the compound of interest. High-resolution mass spectrometry (HRMS) has long sought to be a viable alternative for quantitatipve workflows but has been unable to broadly compete, mainly due to the lack of suitable data processing software.

Methods: The approach we developed agnostically and automatically identifies all ions related to the compound being analyzed in both the MS and MSMS data, acquired with data-dependent or data-independent methods. The algorithm automatically selects optimal parameters (ion extraction window, ions to sum, etc.) to provide the best overall method to meet the acceptance criteria defined by the user (accuracy/precision).

Results: The results obtained are directly compared to QQQ data collected from the same set of samples and show that the automated HRMS approach is as good as and, in some cases, better than the traditional QQQ approach in terms of selectivity, sensitivity, and dynamic range.

Conclusions: This new methodology enables the use of generic methods for data collection for quantitative analysis using high-resolution mass spectrometry. With this approach, data collection is faster, and the processing algorithm provides quality equal to or better than the current QQQ methodology. This enables an overall reduction in cycle time and improved assay performance versus current HRMS-based quantitative analysis as well as traditional QQQ workflows.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
5.00%
发文量
219
审稿时长
2.6 months
期刊介绍: Rapid Communications in Mass Spectrometry is a journal whose aim is the rapid publication of original research results and ideas on all aspects of the science of gas-phase ions; it covers all the associated scientific disciplines. There is no formal limit on paper length ("rapid" is not synonymous with "brief"), but papers should be of a length that is commensurate with the importance and complexity of the results being reported. Contributions may be theoretical or practical in nature; they may deal with methods, techniques and applications, or with the interpretation of results; they may cover any area in science that depends directly on measurements made upon gaseous ions or that is associated with such measurements.
期刊最新文献
Exploration of Active Substances and Its Potential Mechanism of Gancao Fuzi Decoction on Inflammatory Based on Metabolomics and Network Pharmacology Assessing Matrix and Nonmatrix, Single, and Multipoint Calibration of Trace Elements Using LA-ICP-MS on a Tropical Speleothem Molecular Structure and Mass Spectral Data Quality-Driven Processing of High-Resolution Mass Spectrometry for Quantitative Analysis. A Laser Ablation ICP-MS Protocol for High-Resolution Iodine-to-Calcium Ratio (I/Ca) Analysis on Corals A Novel Method to Determine the Carbon Isotopic Composition of Inositol Hexaphosphate (Phytate) in Soil by Gas Chromatography–Combustion–Isotope Ratio Mass Spectrometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1