Christopher De Bono, Yichi Xu, Samina Kausar, Marine Herbane, Camille Humbert, Sevda Rafatov, Chantal Missirian, Mathias Moreno, Weiyang Shi, Yorick Gitton, Alberto Lombardini, Ivo Vanzetta, Séverine Mazaud-Guittot, Alain Chédotal, Anaïs Baudot, Stéphane Zaffran, Heather C Etchevers
{"title":"Multi-modal refinement of the human heart atlas during the first gestational trimester.","authors":"Christopher De Bono, Yichi Xu, Samina Kausar, Marine Herbane, Camille Humbert, Sevda Rafatov, Chantal Missirian, Mathias Moreno, Weiyang Shi, Yorick Gitton, Alberto Lombardini, Ivo Vanzetta, Séverine Mazaud-Guittot, Alain Chédotal, Anaïs Baudot, Stéphane Zaffran, Heather C Etchevers","doi":"10.1242/dev.204555","DOIUrl":null,"url":null,"abstract":"<p><p>Forty first-trimester human hearts were studied to lay groundwork for further studies of principles underlying congenital heart defects. We first sampled 49,227 cardiac nuclei from three fetuses at 8.6, 9.0, and 10.7 post-conceptional weeks (pcw) for single-nucleus RNA sequencing, enabling distinction of six classes comprising 21 cell types. Improved resolution led to identification of novel cardiomyocytes and minority autonomic and lymphatic endothelial transcriptomes, among others. After integration with 5-7 pcw heart single-cell RNAseq, we identified a human cardiomyofibroblast progenitor preceding diversification of cardiomyocyte and stromal lineages. Analysis of six Visium sections from two additional hearts was aided by deconvolution, and key spatial markers validated on sectioned and whole hearts in two- and three-dimensional space and over time. Altogether, anatomical-positional features including innervation, conduction and subdomains of the atrioventricular septum translate latent molecular identity into specialized cardiac functions. This atlas adds unprecedented spatial and temporal resolution to the characterization of human-specific aspects of early heart formation.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204555","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Forty first-trimester human hearts were studied to lay groundwork for further studies of principles underlying congenital heart defects. We first sampled 49,227 cardiac nuclei from three fetuses at 8.6, 9.0, and 10.7 post-conceptional weeks (pcw) for single-nucleus RNA sequencing, enabling distinction of six classes comprising 21 cell types. Improved resolution led to identification of novel cardiomyocytes and minority autonomic and lymphatic endothelial transcriptomes, among others. After integration with 5-7 pcw heart single-cell RNAseq, we identified a human cardiomyofibroblast progenitor preceding diversification of cardiomyocyte and stromal lineages. Analysis of six Visium sections from two additional hearts was aided by deconvolution, and key spatial markers validated on sectioned and whole hearts in two- and three-dimensional space and over time. Altogether, anatomical-positional features including innervation, conduction and subdomains of the atrioventricular septum translate latent molecular identity into specialized cardiac functions. This atlas adds unprecedented spatial and temporal resolution to the characterization of human-specific aspects of early heart formation.
期刊介绍:
Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community.
Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication.
To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.