A survey on UK researchers' views regarding their experiences with the de-identification, anonymisation, release methods and re-identification risk estimation for clinical trial datasets.
Aryelly Rodriguez, Steff C Lewis, Sandra Eldridge, Tracy Jackson, Christopher J Weir
{"title":"A survey on UK researchers' views regarding their experiences with the de-identification, anonymisation, release methods and re-identification risk estimation for clinical trial datasets.","authors":"Aryelly Rodriguez, Steff C Lewis, Sandra Eldridge, Tracy Jackson, Christopher J Weir","doi":"10.1177/17407745241259086","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There are increasing pressures for anonymised datasets from clinical trials to be shared across the scientific community. However, there is no standardised set of recommendations on how to anonymise and prepare clinical trial datasets for sharing, while an ever-increasing number of anonymised datasets are becoming available for secondary research. Our aim was to explore the current views and experiences of researchers in the United Kingdom about de-identification, anonymisation, release methods and re-identification risk estimation for clinical trial datasets.</p><p><strong>Methods: </strong>We used an online exploratory cross-sectional descriptive survey that consisted of both open-ended and closed questions.</p><p><strong>Results: </strong>We had 38 responses to invitation from June 2022 to October 2022. However, 35 participants (92%) used internal documentation and published guidance to de-identify/anonymise clinical trial datasets. De-identification, followed by anonymisation and then fulfilling data holders' requirements before access was granted (controlled access), was the most common process for releasing the datasets as reported by 18 (47%) participants. However, 11 participants (29%) had previous knowledge of re-identification risk estimation, but they did not use any of the methodologies. Experiences in the process of de-identifying/anonymising the datasets and maintaining such datasets were mostly negative, and the main reported issues were lack of resources, guidance, and training.</p><p><strong>Conclusion: </strong>The majority of responders reported using documented processes for de-identification and anonymisation. However, our survey results clearly indicate that there are still gaps in the areas of guidance, resources and training to fulfil sharing requests of de-identified/anonymised datasets, and that re-identification risk estimation is an underdeveloped area.</p>","PeriodicalId":10685,"journal":{"name":"Clinical Trials","volume":"22 1","pages":"11-23"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809122/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Trials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17407745241259086","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: There are increasing pressures for anonymised datasets from clinical trials to be shared across the scientific community. However, there is no standardised set of recommendations on how to anonymise and prepare clinical trial datasets for sharing, while an ever-increasing number of anonymised datasets are becoming available for secondary research. Our aim was to explore the current views and experiences of researchers in the United Kingdom about de-identification, anonymisation, release methods and re-identification risk estimation for clinical trial datasets.
Methods: We used an online exploratory cross-sectional descriptive survey that consisted of both open-ended and closed questions.
Results: We had 38 responses to invitation from June 2022 to October 2022. However, 35 participants (92%) used internal documentation and published guidance to de-identify/anonymise clinical trial datasets. De-identification, followed by anonymisation and then fulfilling data holders' requirements before access was granted (controlled access), was the most common process for releasing the datasets as reported by 18 (47%) participants. However, 11 participants (29%) had previous knowledge of re-identification risk estimation, but they did not use any of the methodologies. Experiences in the process of de-identifying/anonymising the datasets and maintaining such datasets were mostly negative, and the main reported issues were lack of resources, guidance, and training.
Conclusion: The majority of responders reported using documented processes for de-identification and anonymisation. However, our survey results clearly indicate that there are still gaps in the areas of guidance, resources and training to fulfil sharing requests of de-identified/anonymised datasets, and that re-identification risk estimation is an underdeveloped area.
期刊介绍:
Clinical Trials is dedicated to advancing knowledge on the design and conduct of clinical trials related research methodologies. Covering the design, conduct, analysis, synthesis and evaluation of key methodologies, the journal remains on the cusp of the latest topics, including ethics, regulation and policy impact.