Particulate toxic elements' oxidative potential and gastrointestinal bioaccessibility features in the vicinities of coal-fired mineral processing industries, India.
Archi Mishra, Shamsh Pervez, Yasmeen Fatima Pervez, Madhuri Verma, Princy Dugga, Sushant Ranjan Verma, Indrapal Karbhal, Kallol K Ghosh, Manas Kanti Deb, Manmohan L Satnami, Kamlesh Shrivas
{"title":"Particulate toxic elements' oxidative potential and gastrointestinal bioaccessibility features in the vicinities of coal-fired mineral processing industries, India.","authors":"Archi Mishra, Shamsh Pervez, Yasmeen Fatima Pervez, Madhuri Verma, Princy Dugga, Sushant Ranjan Verma, Indrapal Karbhal, Kallol K Ghosh, Manas Kanti Deb, Manmohan L Satnami, Kamlesh Shrivas","doi":"10.1007/s10653-025-02388-x","DOIUrl":null,"url":null,"abstract":"<p><p>Particulate matter (PM) poses significant health risks due to its ability to generate reactive oxygen species (ROS) and transport toxic metal(loid)s into the human body. In this study, an in vitro physiologically based extraction test (PBET) method, allowing the simulation of the gastric phase (GPh) and intestinal phase (IPh) of human digestion, was applied to evaluate bioaccessibility of eleven potentially toxic elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in airborne particulate matter (APM) samples collected from an urban-residential area in Chhattisgarh, India. Additionally, oxidative potential (OP) was assessed using the dithiothreitol (DTT) assay for a comprehensive understanding of PM toxicity. The bioaccessibility of metal(loid)s varied significantly across phases, with gastric phase solubility upto ~ 75%, attributed to its lower pH enhancing metal dissolution. Elevated DTT responses were recorded for PM<sub>10</sub> and PM<sub>2.5</sub>, driven primarily by Fe, Zn, and Pb, underlining their pivotal role in oxidative stress generation. Correlation analyses demonstrated strong associations between bioaccessible fractions and OP, especially in the GPh. The findings advance understanding by linking bioaccessibility with ROS generation and highlight the importance of particle size and solubility in assessing the health risks posed by PM. These insights provide a foundation for improved risk assessments and mitigation strategies targeting emissions from high-temperature processing industries, and vehicular activities, on a global scale.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 3","pages":"72"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02388-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Particulate matter (PM) poses significant health risks due to its ability to generate reactive oxygen species (ROS) and transport toxic metal(loid)s into the human body. In this study, an in vitro physiologically based extraction test (PBET) method, allowing the simulation of the gastric phase (GPh) and intestinal phase (IPh) of human digestion, was applied to evaluate bioaccessibility of eleven potentially toxic elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in airborne particulate matter (APM) samples collected from an urban-residential area in Chhattisgarh, India. Additionally, oxidative potential (OP) was assessed using the dithiothreitol (DTT) assay for a comprehensive understanding of PM toxicity. The bioaccessibility of metal(loid)s varied significantly across phases, with gastric phase solubility upto ~ 75%, attributed to its lower pH enhancing metal dissolution. Elevated DTT responses were recorded for PM10 and PM2.5, driven primarily by Fe, Zn, and Pb, underlining their pivotal role in oxidative stress generation. Correlation analyses demonstrated strong associations between bioaccessible fractions and OP, especially in the GPh. The findings advance understanding by linking bioaccessibility with ROS generation and highlight the importance of particle size and solubility in assessing the health risks posed by PM. These insights provide a foundation for improved risk assessments and mitigation strategies targeting emissions from high-temperature processing industries, and vehicular activities, on a global scale.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.