{"title":"Brain-inspired multimodal motion and fine-grained action recognition.","authors":"Yuening Li, Xiuhua Yang, Changkui Chen","doi":"10.3389/fnbot.2024.1502071","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Traditional action recognition methods predominantly rely on a single modality, such as vision or motion, which presents significant limitations when dealing with fine-grained action recognition. These methods struggle particularly with video data containing complex combinations of actions and subtle motion variations.</p><p><strong>Methods: </strong>Typically, they depend on handcrafted feature extractors or simple convolutional neural network (CNN) architectures, which makes effective multimodal fusion challenging. This study introduces a novel architecture called FGM-CLIP (Fine-Grained Motion CLIP) to enhance fine-grained action recognition. FGM-CLIP leverages the powerful capabilities of Contrastive Language-Image Pretraining (CLIP), integrating a fine-grained motion encoder and a multimodal fusion layer to achieve precise end-to-end action recognition. By jointly optimizing visual and motion features, the model captures subtle action variations, resulting in higher classification accuracy in complex video data.</p><p><strong>Results and discussion: </strong>Experimental results demonstrate that FGM-CLIP significantly outperforms existing methods on multiple fine-grained action recognition datasets. Its multimodal fusion strategy notably improves the model's robustness and accuracy, particularly for videos with intricate action patterns.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1502071"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802800/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1502071","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Traditional action recognition methods predominantly rely on a single modality, such as vision or motion, which presents significant limitations when dealing with fine-grained action recognition. These methods struggle particularly with video data containing complex combinations of actions and subtle motion variations.
Methods: Typically, they depend on handcrafted feature extractors or simple convolutional neural network (CNN) architectures, which makes effective multimodal fusion challenging. This study introduces a novel architecture called FGM-CLIP (Fine-Grained Motion CLIP) to enhance fine-grained action recognition. FGM-CLIP leverages the powerful capabilities of Contrastive Language-Image Pretraining (CLIP), integrating a fine-grained motion encoder and a multimodal fusion layer to achieve precise end-to-end action recognition. By jointly optimizing visual and motion features, the model captures subtle action variations, resulting in higher classification accuracy in complex video data.
Results and discussion: Experimental results demonstrate that FGM-CLIP significantly outperforms existing methods on multiple fine-grained action recognition datasets. Its multimodal fusion strategy notably improves the model's robustness and accuracy, particularly for videos with intricate action patterns.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.