Ye Li, Li Yang, Meifang Yang, Fei Yan, Tonghua Liu, Chensi Guo, Rufeng Chen
{"title":"NavBLIP: a visual-language model for enhancing unmanned aerial vehicles navigation and object detection.","authors":"Ye Li, Li Yang, Meifang Yang, Fei Yan, Tonghua Liu, Chensi Guo, Rufeng Chen","doi":"10.3389/fnbot.2024.1513354","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In recent years, Unmanned Aerial Vehicles (UAVs) have increasingly been deployed in various applications such as autonomous navigation, surveillance, and object detection. Traditional methods for UAV navigation and object detection have often relied on either handcrafted features or unimodal deep learning approaches. While these methods have seen some success, they frequently encounter limitations in dynamic environments, where robustness and computational efficiency become critical for real-time performance. Additionally, these methods often fail to effectively integrate multimodal inputs, which restricts their adaptability and generalization capabilities when facing complex and diverse scenarios.</p><p><strong>Methods: </strong>To address these challenges, we introduce NavBLIP, a novel visual-language model specifically designed to enhance UAV navigation and object detection by utilizing multimodal data. NavBLIP incorporates transfer learning techniques along with a Nuisance-Invariant Multimodal Feature Extraction (NIMFE) module. The NIMFE module plays a key role in disentangling relevant features from intricate visual and environmental inputs, allowing UAVs to swiftly adapt to new environments and improve object detection accuracy. Furthermore, NavBLIP employs a multimodal control strategy that dynamically selects context-specific features to optimize real-time performance, ensuring efficiency in high-stakes operations.</p><p><strong>Results and discussion: </strong>Extensive experiments on benchmark datasets such as RefCOCO, CC12M, and Openlmages reveal that NavBLIP outperforms existing state-of-the-art models in terms of accuracy, recall, and computational efficiency. Additionally, our ablation study emphasizes the significance of the NIMFE and transfer learning components in boosting the model's performance, underscoring NavBLIP's potential for real-time UAV applications where adaptability and computational efficiency are paramount.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1513354"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802496/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1513354","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: In recent years, Unmanned Aerial Vehicles (UAVs) have increasingly been deployed in various applications such as autonomous navigation, surveillance, and object detection. Traditional methods for UAV navigation and object detection have often relied on either handcrafted features or unimodal deep learning approaches. While these methods have seen some success, they frequently encounter limitations in dynamic environments, where robustness and computational efficiency become critical for real-time performance. Additionally, these methods often fail to effectively integrate multimodal inputs, which restricts their adaptability and generalization capabilities when facing complex and diverse scenarios.
Methods: To address these challenges, we introduce NavBLIP, a novel visual-language model specifically designed to enhance UAV navigation and object detection by utilizing multimodal data. NavBLIP incorporates transfer learning techniques along with a Nuisance-Invariant Multimodal Feature Extraction (NIMFE) module. The NIMFE module plays a key role in disentangling relevant features from intricate visual and environmental inputs, allowing UAVs to swiftly adapt to new environments and improve object detection accuracy. Furthermore, NavBLIP employs a multimodal control strategy that dynamically selects context-specific features to optimize real-time performance, ensuring efficiency in high-stakes operations.
Results and discussion: Extensive experiments on benchmark datasets such as RefCOCO, CC12M, and Openlmages reveal that NavBLIP outperforms existing state-of-the-art models in terms of accuracy, recall, and computational efficiency. Additionally, our ablation study emphasizes the significance of the NIMFE and transfer learning components in boosting the model's performance, underscoring NavBLIP's potential for real-time UAV applications where adaptability and computational efficiency are paramount.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.