NavBLIP: a visual-language model for enhancing unmanned aerial vehicles navigation and object detection.

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Neurorobotics Pub Date : 2025-01-24 eCollection Date: 2024-01-01 DOI:10.3389/fnbot.2024.1513354
Ye Li, Li Yang, Meifang Yang, Fei Yan, Tonghua Liu, Chensi Guo, Rufeng Chen
{"title":"NavBLIP: a visual-language model for enhancing unmanned aerial vehicles navigation and object detection.","authors":"Ye Li, Li Yang, Meifang Yang, Fei Yan, Tonghua Liu, Chensi Guo, Rufeng Chen","doi":"10.3389/fnbot.2024.1513354","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In recent years, Unmanned Aerial Vehicles (UAVs) have increasingly been deployed in various applications such as autonomous navigation, surveillance, and object detection. Traditional methods for UAV navigation and object detection have often relied on either handcrafted features or unimodal deep learning approaches. While these methods have seen some success, they frequently encounter limitations in dynamic environments, where robustness and computational efficiency become critical for real-time performance. Additionally, these methods often fail to effectively integrate multimodal inputs, which restricts their adaptability and generalization capabilities when facing complex and diverse scenarios.</p><p><strong>Methods: </strong>To address these challenges, we introduce NavBLIP, a novel visual-language model specifically designed to enhance UAV navigation and object detection by utilizing multimodal data. NavBLIP incorporates transfer learning techniques along with a Nuisance-Invariant Multimodal Feature Extraction (NIMFE) module. The NIMFE module plays a key role in disentangling relevant features from intricate visual and environmental inputs, allowing UAVs to swiftly adapt to new environments and improve object detection accuracy. Furthermore, NavBLIP employs a multimodal control strategy that dynamically selects context-specific features to optimize real-time performance, ensuring efficiency in high-stakes operations.</p><p><strong>Results and discussion: </strong>Extensive experiments on benchmark datasets such as RefCOCO, CC12M, and Openlmages reveal that NavBLIP outperforms existing state-of-the-art models in terms of accuracy, recall, and computational efficiency. Additionally, our ablation study emphasizes the significance of the NIMFE and transfer learning components in boosting the model's performance, underscoring NavBLIP's potential for real-time UAV applications where adaptability and computational efficiency are paramount.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1513354"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802496/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1513354","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: In recent years, Unmanned Aerial Vehicles (UAVs) have increasingly been deployed in various applications such as autonomous navigation, surveillance, and object detection. Traditional methods for UAV navigation and object detection have often relied on either handcrafted features or unimodal deep learning approaches. While these methods have seen some success, they frequently encounter limitations in dynamic environments, where robustness and computational efficiency become critical for real-time performance. Additionally, these methods often fail to effectively integrate multimodal inputs, which restricts their adaptability and generalization capabilities when facing complex and diverse scenarios.

Methods: To address these challenges, we introduce NavBLIP, a novel visual-language model specifically designed to enhance UAV navigation and object detection by utilizing multimodal data. NavBLIP incorporates transfer learning techniques along with a Nuisance-Invariant Multimodal Feature Extraction (NIMFE) module. The NIMFE module plays a key role in disentangling relevant features from intricate visual and environmental inputs, allowing UAVs to swiftly adapt to new environments and improve object detection accuracy. Furthermore, NavBLIP employs a multimodal control strategy that dynamically selects context-specific features to optimize real-time performance, ensuring efficiency in high-stakes operations.

Results and discussion: Extensive experiments on benchmark datasets such as RefCOCO, CC12M, and Openlmages reveal that NavBLIP outperforms existing state-of-the-art models in terms of accuracy, recall, and computational efficiency. Additionally, our ablation study emphasizes the significance of the NIMFE and transfer learning components in boosting the model's performance, underscoring NavBLIP's potential for real-time UAV applications where adaptability and computational efficiency are paramount.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
期刊最新文献
Critical review on the relationship between design variables and performance of dexterous hands: a quantitative analysis. Privacy-preserving ADP for secure tracking control of AVRs against unreliable communication. LoCS-Net: Localizing convolutional spiking neural network for fast visual place recognition. Brain-inspired multimodal motion and fine-grained action recognition. NavBLIP: a visual-language model for enhancing unmanned aerial vehicles navigation and object detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1