Adam M Rork, Sihang Xu, Athula Attygalle, Tanya Renner
{"title":"The molecular mechanisms of defensive-grade organic acid biosynthesis in ground beetles.","authors":"Adam M Rork, Sihang Xu, Athula Attygalle, Tanya Renner","doi":"10.1111/imb.12984","DOIUrl":null,"url":null,"abstract":"<p><p>Insects are known to synthesise and secrete hundreds of unique defensive chemicals, including caustic acids, pungent phenolics and citrusy terpenes. Despite efforts to characterise the defensive chemistry of ground beetles (Coleoptera: Carabidae), our knowledge of semiochemical evolution within the family and how these compounds are biosynthesised remains limited. Few studies have demonstrated the likely biosynthetic precursors of select compounds in certain taxa and only one has demonstrated which genes may be involved in the biosynthesis of formic acid. Here, we characterise the defensive chemistry and generate defensive gland transcriptomes for ground beetle species representing two defensive chemical classes: the formic acid producer Platynus angustatus and the methacrylic acid producer Pterostichus moestus. Through comparative transcriptome analyses, we demonstrate that co-option of distinct primary metabolic pathways may be involved in formic acid and methacrylic acid biosynthesis in the defensive glands of these taxa. These results expand our knowledge of ground beetle defensive chemistry and provide additional evidence that co-option of existing primary metabolic pathways plays a major role in the evolution of ground beetle chemical defence.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12984","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Insects are known to synthesise and secrete hundreds of unique defensive chemicals, including caustic acids, pungent phenolics and citrusy terpenes. Despite efforts to characterise the defensive chemistry of ground beetles (Coleoptera: Carabidae), our knowledge of semiochemical evolution within the family and how these compounds are biosynthesised remains limited. Few studies have demonstrated the likely biosynthetic precursors of select compounds in certain taxa and only one has demonstrated which genes may be involved in the biosynthesis of formic acid. Here, we characterise the defensive chemistry and generate defensive gland transcriptomes for ground beetle species representing two defensive chemical classes: the formic acid producer Platynus angustatus and the methacrylic acid producer Pterostichus moestus. Through comparative transcriptome analyses, we demonstrate that co-option of distinct primary metabolic pathways may be involved in formic acid and methacrylic acid biosynthesis in the defensive glands of these taxa. These results expand our knowledge of ground beetle defensive chemistry and provide additional evidence that co-option of existing primary metabolic pathways plays a major role in the evolution of ground beetle chemical defence.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).