Rong-Han Chen, Yun Bai, Li-Dong Shi, Xing-Yu Liu, Dong-Liang Li, Mi Di, Jia-Xin Duan, Zi-Heng Zhang, Jin-Li Xu, Zhu-Qing He, Kai Li
{"title":"Functional exploration of the Sex combs reduced gene in Gryllus bimaculatus.","authors":"Rong-Han Chen, Yun Bai, Li-Dong Shi, Xing-Yu Liu, Dong-Liang Li, Mi Di, Jia-Xin Duan, Zi-Heng Zhang, Jin-Li Xu, Zhu-Qing He, Kai Li","doi":"10.1111/imb.12987","DOIUrl":null,"url":null,"abstract":"<p><p>The Hox gene Sex combs reduced (Scr) is recognized as a key factor in the development of the head and thorax in insects. However, its function in the growth, development and morphogenesis of Gryllus bimaculatus remains poorly understood. This study aimed to explore the function of the Scr gene in G. bimaculatus by using CRISPR/Cas9 technology to generate an Scr gene knock-out strain. Intercrossing the G<sub>0</sub> generation knock-out individuals with wild-type individuals yielded the G<sub>1</sub> generation to screen the mutant strain. It was found that the knock-out of the Scr gene had a severe impact on the growth and development of G. bimaculatus, resulting in high mortality and making it difficult to obtain Scr<sup>-/-</sup> mutants. Therefore, heterozygous individuals (Scr<sup>+/-</sup>) with 1 bp deleted were obtained for investigation. The results showed that the Scr deletion led to ectopic segment formation in the G<sub>0</sub> generation. In the G<sub>2</sub> generation, it was observed that stable Scr<sup>-/-</sup> strains displayed abnormal embryonic development, characterized by enlarged, blackened and lethal eggs during embryogenesis. During the post-embryonic stage, Scr<sup>-/-</sup> mutants exhibited abnormalities in body segmentation, particularly in the head-thorax region, resulting in a dorsal ridge structure. Furthermore, some Scr<sup>+/-</sup> individuals exhibited a dorsal ridge during the nymphal stage. Notably, this characteristic did not persist into the adult stage. Our findings highlight the distinct but crucial roles of the Scr gene in both embryonic and post-embryonic growth and development of G. bimaculatus.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12987","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Hox gene Sex combs reduced (Scr) is recognized as a key factor in the development of the head and thorax in insects. However, its function in the growth, development and morphogenesis of Gryllus bimaculatus remains poorly understood. This study aimed to explore the function of the Scr gene in G. bimaculatus by using CRISPR/Cas9 technology to generate an Scr gene knock-out strain. Intercrossing the G0 generation knock-out individuals with wild-type individuals yielded the G1 generation to screen the mutant strain. It was found that the knock-out of the Scr gene had a severe impact on the growth and development of G. bimaculatus, resulting in high mortality and making it difficult to obtain Scr-/- mutants. Therefore, heterozygous individuals (Scr+/-) with 1 bp deleted were obtained for investigation. The results showed that the Scr deletion led to ectopic segment formation in the G0 generation. In the G2 generation, it was observed that stable Scr-/- strains displayed abnormal embryonic development, characterized by enlarged, blackened and lethal eggs during embryogenesis. During the post-embryonic stage, Scr-/- mutants exhibited abnormalities in body segmentation, particularly in the head-thorax region, resulting in a dorsal ridge structure. Furthermore, some Scr+/- individuals exhibited a dorsal ridge during the nymphal stage. Notably, this characteristic did not persist into the adult stage. Our findings highlight the distinct but crucial roles of the Scr gene in both embryonic and post-embryonic growth and development of G. bimaculatus.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).