Development of a Tetrahymena thermophila-Based Vaccine Expressing Miamiensis avidus Ciliary Proteins to Combat Scuticociliatosis.

IF 2.2 3区 农林科学 Q2 FISHERIES Journal of fish diseases Pub Date : 2025-02-09 DOI:10.1111/jfd.14097
Yuho Watanabe, Maho Kotake, Hiromi Matsuoka, Tomoyoshi Yoshinaga, Shin-Ichi Kitamura
{"title":"Development of a Tetrahymena thermophila-Based Vaccine Expressing Miamiensis avidus Ciliary Proteins to Combat Scuticociliatosis.","authors":"Yuho Watanabe, Maho Kotake, Hiromi Matsuoka, Tomoyoshi Yoshinaga, Shin-Ichi Kitamura","doi":"10.1111/jfd.14097","DOIUrl":null,"url":null,"abstract":"<p><p>Miamiensis avidus is a parasitic pathogen responsible for scuticociliatosis, a lethal infection affecting marine fish worldwide, including Japanese flounder. Immunisation with formalin-killed M. avidus has shown promise in inducing protective immunity, positioning it as a potential vaccine candidate against scuticociliatosis. However, challenges such as the high cost of producing sufficient cells and inconsistent quality due to the lack of cryopreservation methods hinder its development. In this study, we expressed M. avidus ciliary proteins in Tetrahymena, a culturable ciliate, and used these cells to immunise Japanese flounder. The immunised fish produced antibodies against M. avidus. Additionally, immunisation with two transgenic Tetrahymena strains, each expressing different ciliary proteins, induced the production of antibodies against two serotypes of the parasite. In challenge experiments, fish immunised with the transgenic Tetrahymena showed prolonged survival compared to the control group, highlighting the potential of this approach as a vaccine candidate. These findings suggest that transgenic Tetrahymena cells could be a viable platform for developing vaccines against multiple serotypes of M. avidus.</p>","PeriodicalId":15849,"journal":{"name":"Journal of fish diseases","volume":" ","pages":"e14097"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of fish diseases","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jfd.14097","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Miamiensis avidus is a parasitic pathogen responsible for scuticociliatosis, a lethal infection affecting marine fish worldwide, including Japanese flounder. Immunisation with formalin-killed M. avidus has shown promise in inducing protective immunity, positioning it as a potential vaccine candidate against scuticociliatosis. However, challenges such as the high cost of producing sufficient cells and inconsistent quality due to the lack of cryopreservation methods hinder its development. In this study, we expressed M. avidus ciliary proteins in Tetrahymena, a culturable ciliate, and used these cells to immunise Japanese flounder. The immunised fish produced antibodies against M. avidus. Additionally, immunisation with two transgenic Tetrahymena strains, each expressing different ciliary proteins, induced the production of antibodies against two serotypes of the parasite. In challenge experiments, fish immunised with the transgenic Tetrahymena showed prolonged survival compared to the control group, highlighting the potential of this approach as a vaccine candidate. These findings suggest that transgenic Tetrahymena cells could be a viable platform for developing vaccines against multiple serotypes of M. avidus.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of fish diseases
Journal of fish diseases 农林科学-海洋与淡水生物学
CiteScore
4.60
自引率
12.00%
发文量
170
审稿时长
6 months
期刊介绍: Journal of Fish Diseases enjoys an international reputation as the medium for the exchange of information on original research into all aspects of disease in both wild and cultured fish and shellfish. Areas of interest regularly covered by the journal include: -host-pathogen relationships- studies of fish pathogens- pathophysiology- diagnostic methods- therapy- epidemiology- descriptions of new diseases
期刊最新文献
Construction of Heme-Binding Protein Deleted Strain and Using It as an Attenuated Vaccine Against Nocardia seriolae in Hybrid Snakehead (Channa maculata ♀ × Channa argus ♂). Effects of Different Preservatives During Ecological Monitoring of Myxozoan Parasite Tetracapsuloides bryosalmonae Causing Proliferative Kidney Disease (PKD) in Salmonids. Development and Evaluation of a Rapid Visualisation Detection Method for Ameson portunus Based on RPA-LFD. Development of a Tetrahymena thermophila-Based Vaccine Expressing Miamiensis avidus Ciliary Proteins to Combat Scuticociliatosis. Susceptibility of Non-Tuberculous Mycobacteria Biofilm to Common Disinfectants in Aquaculture Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1