Phenotypic and genotypic insights into concurrent tertiary trisomy for 9p and 18p.

IF 1.3 4区 生物学 Q4 GENETICS & HEREDITY Molecular Cytogenetics Pub Date : 2025-02-10 DOI:10.1186/s13039-025-00704-9
Carter A Wright, Angela E Scheuerle, Kathleen Wilson, Rolando García, Prasad Koduru
{"title":"Phenotypic and genotypic insights into concurrent tertiary trisomy for 9p and 18p.","authors":"Carter A Wright, Angela E Scheuerle, Kathleen Wilson, Rolando García, Prasad Koduru","doi":"10.1186/s13039-025-00704-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Carriers of balanced reciprocal translocation are usually phenotypically normal; however, they have an increased risk of producing gametes with chromosomal imbalance through different types of meiotic segregation of the translocation quadrivalent. The genetically imbalanced gametes when they survive can result in embryos with chromosomal abnormalities. Here we report a family with two siblings inheriting partial trisomy for 9p and 18p concurrently resulting from a 3:1 meiotic segregation of a maternal balanced translocation involving chromosome 9q and 18p, and the associated phenotype.</p><p><strong>The family - case presentation: </strong>The family was ascertained because of severe congenital anomalies in a newborn male (sibling 1). The karyotype of this patient was 47,XY,+del(9)(q13q34). Cytogenetic analysis revealed that the phenotypically normal mother harbored a balanced translocation 46,XX,t(9;18)(q13;p11.21). Chromosomal microarray analysis (CMA) of the abnormal child detected segmental trisomy for 9p and 18p. In conjunction with conventional cytogenetic results of the mother and CMA results of the affected child, the final karyotype of sibling one was 47,XY,+der(9)t(9;18) (q13;p11.22)dmat. arr[GRCh36] 9p24.3q13(199254_70163189)× 3, 18p11.32p11.22(131491_9640590)× 3; this resulted in segmental duplication of 69.96 Mb on 9pter->q13 and 9.51 Mb on 18p. There was a subsequent birth of a female sibling (sibling two) with multiple anomalies, including dysmorphic facial features, kidney aberration, cardiac defects, and abnormal brain MRI. The G-banded karyotype of this sibling was 47,XX,+del(9)(q13q34). The final karyotype of this sibling after CMA results was 47,XX,+der(9)t(9;18)(q13;p11.22)dmat. arr[GRCh37] 9p24.3p13.1(209020_38763958)× 3; 18p11.32p11.22(146484_9640912)× 3. The apparent discrepancy between the array results of the two siblings is attributed to difference in the design of array chips and genome builds used for these patients (NimbleGen/Roche v2.0 3-plex and GRCh36 for sibling one, and GGXChip + SNP array and GRCh37 of Agilent Technologies for sibling two). There are 182 OMIM genes in the duplicated region of 9p and 33 OMIM genes in the duplicated region of 18p which may have contributed to the clinical features of the affected siblings.</p><p><strong>Conclusions: </strong>To our knowledge, we report the first two cases of concurrent partial trisomy 9p and 18p in the same family. This report adds more information about phenotypic effects of these chromosomal copy number gains and supports chromosomal microarray analysis as the standard for precise identification or demarking regions of duplications, particularly when the translocation involves at least one subterminal segment. In view of the recurring infants with congenital anomalies the couple may benefit from prenatal chromosome analysis of future pregnancies or opting to assisted reproductive methods and transferring normal embryos for implantation.</p>","PeriodicalId":19099,"journal":{"name":"Molecular Cytogenetics","volume":"18 1","pages":"1"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808968/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cytogenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13039-025-00704-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Carriers of balanced reciprocal translocation are usually phenotypically normal; however, they have an increased risk of producing gametes with chromosomal imbalance through different types of meiotic segregation of the translocation quadrivalent. The genetically imbalanced gametes when they survive can result in embryos with chromosomal abnormalities. Here we report a family with two siblings inheriting partial trisomy for 9p and 18p concurrently resulting from a 3:1 meiotic segregation of a maternal balanced translocation involving chromosome 9q and 18p, and the associated phenotype.

The family - case presentation: The family was ascertained because of severe congenital anomalies in a newborn male (sibling 1). The karyotype of this patient was 47,XY,+del(9)(q13q34). Cytogenetic analysis revealed that the phenotypically normal mother harbored a balanced translocation 46,XX,t(9;18)(q13;p11.21). Chromosomal microarray analysis (CMA) of the abnormal child detected segmental trisomy for 9p and 18p. In conjunction with conventional cytogenetic results of the mother and CMA results of the affected child, the final karyotype of sibling one was 47,XY,+der(9)t(9;18) (q13;p11.22)dmat. arr[GRCh36] 9p24.3q13(199254_70163189)× 3, 18p11.32p11.22(131491_9640590)× 3; this resulted in segmental duplication of 69.96 Mb on 9pter->q13 and 9.51 Mb on 18p. There was a subsequent birth of a female sibling (sibling two) with multiple anomalies, including dysmorphic facial features, kidney aberration, cardiac defects, and abnormal brain MRI. The G-banded karyotype of this sibling was 47,XX,+del(9)(q13q34). The final karyotype of this sibling after CMA results was 47,XX,+der(9)t(9;18)(q13;p11.22)dmat. arr[GRCh37] 9p24.3p13.1(209020_38763958)× 3; 18p11.32p11.22(146484_9640912)× 3. The apparent discrepancy between the array results of the two siblings is attributed to difference in the design of array chips and genome builds used for these patients (NimbleGen/Roche v2.0 3-plex and GRCh36 for sibling one, and GGXChip + SNP array and GRCh37 of Agilent Technologies for sibling two). There are 182 OMIM genes in the duplicated region of 9p and 33 OMIM genes in the duplicated region of 18p which may have contributed to the clinical features of the affected siblings.

Conclusions: To our knowledge, we report the first two cases of concurrent partial trisomy 9p and 18p in the same family. This report adds more information about phenotypic effects of these chromosomal copy number gains and supports chromosomal microarray analysis as the standard for precise identification or demarking regions of duplications, particularly when the translocation involves at least one subterminal segment. In view of the recurring infants with congenital anomalies the couple may benefit from prenatal chromosome analysis of future pregnancies or opting to assisted reproductive methods and transferring normal embryos for implantation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Cytogenetics
Molecular Cytogenetics GENETICS & HEREDITY-
CiteScore
2.60
自引率
7.70%
发文量
49
审稿时长
>12 weeks
期刊介绍: Molecular Cytogenetics encompasses all aspects of chromosome biology and the application of molecular cytogenetic techniques in all areas of biology and medicine, including structural and functional organization of the chromosome and nucleus, genome variation, expression and evolution, chromosome abnormalities and genomic variations in medical genetics and tumor genetics. Molecular Cytogenetics primarily defines a large set of the techniques that operate either with the entire genome or with specific targeted DNA sequences. Topical areas include, but are not limited to: -Structural and functional organization of chromosome and nucleus- Genome variation, expression and evolution- Animal and plant molecular cytogenetics and genomics- Chromosome abnormalities and genomic variations in clinical genetics- Applications in preimplantation, pre- and post-natal diagnosis- Applications in the central nervous system, cancer and haematology research- Previously unreported applications of molecular cytogenetic techniques- Development of new techniques or significant enhancements to established techniques. This journal is a source for numerous scientists all over the world, who wish to improve or introduce molecular cytogenetic techniques into their practice.
期刊最新文献
Whole genome uniparental isodisomy detected using single nucleotide polymorphism (SNP) microarray in molar pregnancy: a case report. Prevalence of CNVs on the X chromosome in patients with neurodevelopmental disorders. Preparing high-quality chromosome spreads from Crocus species for karyotyping and FISH. Phenotypic and genotypic insights into concurrent tertiary trisomy for 9p and 18p. Performance of cell free DNA as a screening tool based on the results of first trimester screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1