Onyinye O Okonkwo, Veronica Ortega, Sheila Kane, Galina Aldrete, Paulina Ramirez, Philip T Valente, Gopalrao V N Velagaleti
{"title":"Whole genome uniparental isodisomy detected using single nucleotide polymorphism (SNP) microarray in molar pregnancy: a case report.","authors":"Onyinye O Okonkwo, Veronica Ortega, Sheila Kane, Galina Aldrete, Paulina Ramirez, Philip T Valente, Gopalrao V N Velagaleti","doi":"10.1186/s13039-025-00707-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gestational trophoblastic neoplasms consist of complete and partial hydatidiform moles, both of which are considered aberrant conceptuses. Both conditions, complete hydatidiform mole (CHM) and partial hydatidiform mole (PHM), differ in histological characteristics, genetic origin and content and clinical features. CHM have a diploid karyotype, mostly 46,XX but lack maternal genetic contribution with all chromosomes of paternal origin. High-resolution SNP microarray testing is an efficient method used to determine the parental contribution of the genomic material in molar pregnancies and confirm the diagnosis.</p><p><strong>Case presentation: </strong>We present a case of CHM in a 43-year-old, G3P2Ab1 who presented to the emergency department with 2 episodes of heavy bleeding. Chromosome analysis showed a normal 46,XX karyotype but with a homozygous pericentric inversion on chromosome 9. High-resolution SNP microarray studies detected whole genome uniparental isodisomy.</p><p><strong>Conclusion: </strong>We present a case of CHM with homozygous pericentric inversion on chromosome 9 and whole genome uniparental isodisomy. This case illustrates the efficacy of high-resolution SNP microarray in confirming the diagnosis of CHM.</p>","PeriodicalId":19099,"journal":{"name":"Molecular Cytogenetics","volume":"18 1","pages":"4"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863443/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cytogenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13039-025-00707-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Gestational trophoblastic neoplasms consist of complete and partial hydatidiform moles, both of which are considered aberrant conceptuses. Both conditions, complete hydatidiform mole (CHM) and partial hydatidiform mole (PHM), differ in histological characteristics, genetic origin and content and clinical features. CHM have a diploid karyotype, mostly 46,XX but lack maternal genetic contribution with all chromosomes of paternal origin. High-resolution SNP microarray testing is an efficient method used to determine the parental contribution of the genomic material in molar pregnancies and confirm the diagnosis.
Case presentation: We present a case of CHM in a 43-year-old, G3P2Ab1 who presented to the emergency department with 2 episodes of heavy bleeding. Chromosome analysis showed a normal 46,XX karyotype but with a homozygous pericentric inversion on chromosome 9. High-resolution SNP microarray studies detected whole genome uniparental isodisomy.
Conclusion: We present a case of CHM with homozygous pericentric inversion on chromosome 9 and whole genome uniparental isodisomy. This case illustrates the efficacy of high-resolution SNP microarray in confirming the diagnosis of CHM.
期刊介绍:
Molecular Cytogenetics encompasses all aspects of chromosome biology and the application of molecular cytogenetic techniques in all areas of biology and medicine, including structural and functional organization of the chromosome and nucleus, genome variation, expression and evolution, chromosome abnormalities and genomic variations in medical genetics and tumor genetics.
Molecular Cytogenetics primarily defines a large set of the techniques that operate either with the entire genome or with specific targeted DNA sequences. Topical areas include, but are not limited to:
-Structural and functional organization of chromosome and nucleus-
Genome variation, expression and evolution-
Animal and plant molecular cytogenetics and genomics-
Chromosome abnormalities and genomic variations in clinical genetics-
Applications in preimplantation, pre- and post-natal diagnosis-
Applications in the central nervous system, cancer and haematology research-
Previously unreported applications of molecular cytogenetic techniques-
Development of new techniques or significant enhancements to established techniques.
This journal is a source for numerous scientists all over the world, who wish to improve or introduce molecular cytogenetic techniques into their practice.