Neil Glikin, Benjamin A Stickler, Ryan Tollefsen, Sara Mouradian, Neha Yadav, Erik Urban, Klaus Hornberger, Hartmut Häffner
{"title":"Probing Rotational Decoherence with a Trapped-Ion Planar Rotor.","authors":"Neil Glikin, Benjamin A Stickler, Ryan Tollefsen, Sara Mouradian, Neha Yadav, Erik Urban, Klaus Hornberger, Hartmut Häffner","doi":"10.1103/PhysRevLett.134.033601","DOIUrl":null,"url":null,"abstract":"<p><p>The quantum rotor is one of the simplest model systems in quantum mechanics, but only in recent years has theoretical work revealed general fundamental scaling laws for its decoherence. For example, a superposition of orientations decoheres at a rate proportional to the sine squared of the angle between them. Here, we observe scaling laws for rotational decoherence dynamics for the first time, using a 4 μm diameter planar rotor composed of two Paul-trapped ions. We prepare the rotational motion of the ion crystal into superpositions of angular momentum with well-defined differences ranging from 1-3ℏ, and measure the rate of decoherence. We also tune the system-environment interaction strength by introducing resonant electric field noise. The observed scaling relationships for decoherence are in excellent agreement with recent theoretical work, and are directly relevant to the growing development of rotor-based quantum applications.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 3","pages":"033601"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.033601","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The quantum rotor is one of the simplest model systems in quantum mechanics, but only in recent years has theoretical work revealed general fundamental scaling laws for its decoherence. For example, a superposition of orientations decoheres at a rate proportional to the sine squared of the angle between them. Here, we observe scaling laws for rotational decoherence dynamics for the first time, using a 4 μm diameter planar rotor composed of two Paul-trapped ions. We prepare the rotational motion of the ion crystal into superpositions of angular momentum with well-defined differences ranging from 1-3ℏ, and measure the rate of decoherence. We also tune the system-environment interaction strength by introducing resonant electric field noise. The observed scaling relationships for decoherence are in excellent agreement with recent theoretical work, and are directly relevant to the growing development of rotor-based quantum applications.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks