The concomitant tumor suspension cells derived from SKBR-3 exhibit circulating tumor cell features.

IF 2.7 4区 生物学 Q1 ANATOMY & MORPHOLOGY Tissue & cell Pub Date : 2025-04-01 Epub Date: 2025-02-05 DOI:10.1016/j.tice.2025.102777
Daiye Li, Feihong Liu, Shanshan Li, Xiaoli Zhao, Kelvin Wai Kwok Yeung, Tak Man Wong, Jun Wu
{"title":"The concomitant tumor suspension cells derived from SKBR-3 exhibit circulating tumor cell features.","authors":"Daiye Li, Feihong Liu, Shanshan Li, Xiaoli Zhao, Kelvin Wai Kwok Yeung, Tak Man Wong, Jun Wu","doi":"10.1016/j.tice.2025.102777","DOIUrl":null,"url":null,"abstract":"<p><p>Metastatic diseases are the major causes of cancer related deaths. Circulating tumor cells are important mediators for distant metastases. However, knowledge about circulating tumor cells is still limited due to their small quantity, lack of explicit markers, interferences from blood cells and immune cells, and so on. In this study, we discovered the concomitant tumor suspension cells in a human epidermal growth factor receptor 2 enriched type breast cancer cell line, SKBR-3. In vitro cultured SKBR-3 shed suspension cells in a spontaneous and continuous manner, which can survive and proliferate infinitely under suspension state. We therefore established the \"progeny\" suspension cell line of its adherent counterpart, or so-called the concomitant tumor suspension cell line. The concomitant tumor suspension cells were in an intermediate partial-epithelial-mesenchymal transition state and were highly adapted to survival in the blood circulation system. The tendency to form microtumors suggests that they are closely related to the metastases of cancers. This study provides a new direction for investigating metastases. By screening more cancer cell lines and establishing more concomitant tumor suspension cell lines, we can acquire much more knowledge implying the evolution of circulating tumor cells, and achieve a better understanding of cancer metastases.</p>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"102777"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tice.2025.102777","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Metastatic diseases are the major causes of cancer related deaths. Circulating tumor cells are important mediators for distant metastases. However, knowledge about circulating tumor cells is still limited due to their small quantity, lack of explicit markers, interferences from blood cells and immune cells, and so on. In this study, we discovered the concomitant tumor suspension cells in a human epidermal growth factor receptor 2 enriched type breast cancer cell line, SKBR-3. In vitro cultured SKBR-3 shed suspension cells in a spontaneous and continuous manner, which can survive and proliferate infinitely under suspension state. We therefore established the "progeny" suspension cell line of its adherent counterpart, or so-called the concomitant tumor suspension cell line. The concomitant tumor suspension cells were in an intermediate partial-epithelial-mesenchymal transition state and were highly adapted to survival in the blood circulation system. The tendency to form microtumors suggests that they are closely related to the metastases of cancers. This study provides a new direction for investigating metastases. By screening more cancer cell lines and establishing more concomitant tumor suspension cell lines, we can acquire much more knowledge implying the evolution of circulating tumor cells, and achieve a better understanding of cancer metastases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue & cell
Tissue & cell 医学-解剖学与形态学
CiteScore
3.90
自引率
0.00%
发文量
234
期刊介绍: Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed. Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.
期刊最新文献
Ghrelin alleviates inflammation and pyroptosis by inhibiting TNF-α /caspase-8/caspase-3/ GSDME signalling pathways in an in vitro model of high glucose induced liver injury. Corrigendum to "PDE4B abrogation extenuates angiotensin II-induced endothelial dysfunction related to hypertension through up-regulation of AMPK/Sirt1/Nrf2/ARE signaling" [Tissue Cell 91 (2024) 102637]. Molecular mechanisms of angiotensin type 2 receptor-mediated nitric oxide pathway in angiotensin II-induced vasorelaxation: Roles of potassium channels. Taxifolin mitigates cisplatin-induced testicular damage by reducing inflammation, oxidative stress, and apoptosis in mice. Exosome-derived Uc.339 as a potential biomarker for bone metastasis from pulmonary adenocarcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1