Daiye Li, Feihong Liu, Shanshan Li, Xiaoli Zhao, Kelvin Wai Kwok Yeung, Tak Man Wong, Jun Wu
{"title":"The concomitant tumor suspension cells derived from SKBR-3 exhibit circulating tumor cell features.","authors":"Daiye Li, Feihong Liu, Shanshan Li, Xiaoli Zhao, Kelvin Wai Kwok Yeung, Tak Man Wong, Jun Wu","doi":"10.1016/j.tice.2025.102777","DOIUrl":null,"url":null,"abstract":"<p><p>Metastatic diseases are the major causes of cancer related deaths. Circulating tumor cells are important mediators for distant metastases. However, knowledge about circulating tumor cells is still limited due to their small quantity, lack of explicit markers, interferences from blood cells and immune cells, and so on. In this study, we discovered the concomitant tumor suspension cells in a human epidermal growth factor receptor 2 enriched type breast cancer cell line, SKBR-3. In vitro cultured SKBR-3 shed suspension cells in a spontaneous and continuous manner, which can survive and proliferate infinitely under suspension state. We therefore established the \"progeny\" suspension cell line of its adherent counterpart, or so-called the concomitant tumor suspension cell line. The concomitant tumor suspension cells were in an intermediate partial-epithelial-mesenchymal transition state and were highly adapted to survival in the blood circulation system. The tendency to form microtumors suggests that they are closely related to the metastases of cancers. This study provides a new direction for investigating metastases. By screening more cancer cell lines and establishing more concomitant tumor suspension cell lines, we can acquire much more knowledge implying the evolution of circulating tumor cells, and achieve a better understanding of cancer metastases.</p>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"102777"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tice.2025.102777","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metastatic diseases are the major causes of cancer related deaths. Circulating tumor cells are important mediators for distant metastases. However, knowledge about circulating tumor cells is still limited due to their small quantity, lack of explicit markers, interferences from blood cells and immune cells, and so on. In this study, we discovered the concomitant tumor suspension cells in a human epidermal growth factor receptor 2 enriched type breast cancer cell line, SKBR-3. In vitro cultured SKBR-3 shed suspension cells in a spontaneous and continuous manner, which can survive and proliferate infinitely under suspension state. We therefore established the "progeny" suspension cell line of its adherent counterpart, or so-called the concomitant tumor suspension cell line. The concomitant tumor suspension cells were in an intermediate partial-epithelial-mesenchymal transition state and were highly adapted to survival in the blood circulation system. The tendency to form microtumors suggests that they are closely related to the metastases of cancers. This study provides a new direction for investigating metastases. By screening more cancer cell lines and establishing more concomitant tumor suspension cell lines, we can acquire much more knowledge implying the evolution of circulating tumor cells, and achieve a better understanding of cancer metastases.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.