Gene editing enables non-invasive in vivo PET imaging of human induced pluripotent stem cell-derived liver bud organoids.

IF 4.6 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Therapy-Methods & Clinical Development Pub Date : 2025-01-07 eCollection Date: 2025-03-13 DOI:10.1016/j.omtm.2025.101406
Candice Ashmore-Harris, Hiroaki Ayabe, Emi Yoshizawa, Tetsu Arisawa, Yuuki Takada, Takanori Takebe, Gilbert O Fruhwirth
{"title":"Gene editing enables non-invasive <i>in vivo</i> PET imaging of human induced pluripotent stem cell-derived liver bud organoids.","authors":"Candice Ashmore-Harris, Hiroaki Ayabe, Emi Yoshizawa, Tetsu Arisawa, Yuuki Takada, Takanori Takebe, Gilbert O Fruhwirth","doi":"10.1016/j.omtm.2025.101406","DOIUrl":null,"url":null,"abstract":"<p><p>Human induced pluripotent stem cell (hiPSC)-derived liver cell therapies such as hepatocyte-like cells and liver organoids could provide unlimited therapeutic cells for clinical transplantation, but an inadequate understanding of their <i>in vivo</i> fate impedes translation. Whole body <i>in vivo</i> imaging could enable monitoring of transplanted cell survival and/or expansion non-invasively over time, permitting robust comparisons between emerging therapies to identify those most effective. The human sodium iodide symporter (hNIS) is a radionuclide reporter gene facilitating whole body <i>in vivo</i> cell tracking by positron emission tomography (PET). We gene-edited a clinical Good Manufacturing Practice-compliant hiPSC line at the AAVS1 safe harbor locus enabling constitutive expression of a hNIS-monomeric(m)GFP fusion reporter in hiPSCs and their differentiated progeny. We confirmed reporter integration did not impact pluripotency or differentiation capacity, and radiotracer uptake capacity was retained post-differentiation. <i>In vivo</i> trackable liver bud (LB) organoids were generated from traceable hNIS fused to monomeric GFP (hNIS-mGFP)-hiPSCs and transplanted into healthy and liver-injured mice. LB were imaged quantitatively by 18FBF<sub>4</sub> <sup>-</sup>-PET with imaging results confirmed histologically. We report, for the first time, hNIS-mGFP-hiPSC progeny retain differentiated function and PET trackability <i>in vivo</i> using LB. <i>In vivo</i> monitoring could accelerate regenerative cell therapy development by identifying efficacious candidate cells, successful engraftment/survival strategies and addressing safety concerns.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"33 1","pages":"101406"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803834/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2025.101406","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Human induced pluripotent stem cell (hiPSC)-derived liver cell therapies such as hepatocyte-like cells and liver organoids could provide unlimited therapeutic cells for clinical transplantation, but an inadequate understanding of their in vivo fate impedes translation. Whole body in vivo imaging could enable monitoring of transplanted cell survival and/or expansion non-invasively over time, permitting robust comparisons between emerging therapies to identify those most effective. The human sodium iodide symporter (hNIS) is a radionuclide reporter gene facilitating whole body in vivo cell tracking by positron emission tomography (PET). We gene-edited a clinical Good Manufacturing Practice-compliant hiPSC line at the AAVS1 safe harbor locus enabling constitutive expression of a hNIS-monomeric(m)GFP fusion reporter in hiPSCs and their differentiated progeny. We confirmed reporter integration did not impact pluripotency or differentiation capacity, and radiotracer uptake capacity was retained post-differentiation. In vivo trackable liver bud (LB) organoids were generated from traceable hNIS fused to monomeric GFP (hNIS-mGFP)-hiPSCs and transplanted into healthy and liver-injured mice. LB were imaged quantitatively by 18FBF4 --PET with imaging results confirmed histologically. We report, for the first time, hNIS-mGFP-hiPSC progeny retain differentiated function and PET trackability in vivo using LB. In vivo monitoring could accelerate regenerative cell therapy development by identifying efficacious candidate cells, successful engraftment/survival strategies and addressing safety concerns.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Therapy-Methods & Clinical Development
Molecular Therapy-Methods & Clinical Development Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.90
自引率
4.30%
发文量
163
审稿时长
12 weeks
期刊介绍: The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella. Topics of particular interest within the journal''s scope include: Gene vector engineering and production, Methods for targeted genome editing and engineering, Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells, Methods for gene and cell vector delivery, Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine, Analysis of gene and cell vector biodistribution and tracking, Pharmacology/toxicology studies of new and next-generation vectors, Methods for cell isolation, engineering, culture, expansion, and transplantation, Cell processing, storage, and banking for therapeutic application, Preclinical and QC/QA assay development, Translational and clinical scale-up and Good Manufacturing procedures and process development, Clinical protocol development, Computational and bioinformatic methods for analysis, modeling, or visualization of biological data, Negotiating the regulatory approval process and obtaining such approval for clinical trials.
期刊最新文献
Modeling Pkd1 gene-targeted strategies for correction of polycystic kidney disease. Ensuring patient access to gene therapies for rare diseases: Navigating reimbursement and coverage challenges. Gene editing enables non-invasive in vivo PET imaging of human induced pluripotent stem cell-derived liver bud organoids. mTOR downregulation promotes anti-inflammatory responses via the CCL3-CCR5 axis in hypoxic retinopathy. Reducing off-target expression of mRNA therapeutics and vaccines in the liver with microRNA binding sites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1