{"title":"Characterization of a credibility index.","authors":"Piero Quatto, Enrico Ripamonti, Donata Marasini","doi":"10.1080/10543406.2025.2456170","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the role of the <i>p</i>-value in applied research has been heavily scrutinized. Several new proposals have been put forward from a Bayesian viewpoint, including the analysis of credibility. By using the reverse Bayes theorem, and reasoning in terms of subverting the significance or the non-significance denoted by the <i>p</i>-value, this analysis provides the credibility, in a Bayesian sense, of an experimental result. We discuss a normalized indicator of credibility, namely <math><mi>C</mi></math>, a variant of the index <math><mover><mi>C</mi><mo>˜</mo></mover></math> (Quatto et al. J. Biopharm. Stat. 32, 308-329, 2022). This can be used to assess the degree of credibility of experimental results and can also be compared with a fixed threshold. The index is extended to the case of one-sided hypotheses. A simulation study is conducted to empirically assess the behavior of the index <math><mi>C</mi></math>. Two illustrative examples in the contexts of pharmacotherapy for COVID-19 and heart failure are presented. We then propose adopting the credibility index for meta-analyses, in which it can provide a suitable diagnostic value for modeling fixed and random effects.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-16"},"PeriodicalIF":1.2000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2456170","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the role of the p-value in applied research has been heavily scrutinized. Several new proposals have been put forward from a Bayesian viewpoint, including the analysis of credibility. By using the reverse Bayes theorem, and reasoning in terms of subverting the significance or the non-significance denoted by the p-value, this analysis provides the credibility, in a Bayesian sense, of an experimental result. We discuss a normalized indicator of credibility, namely , a variant of the index (Quatto et al. J. Biopharm. Stat. 32, 308-329, 2022). This can be used to assess the degree of credibility of experimental results and can also be compared with a fixed threshold. The index is extended to the case of one-sided hypotheses. A simulation study is conducted to empirically assess the behavior of the index . Two illustrative examples in the contexts of pharmacotherapy for COVID-19 and heart failure are presented. We then propose adopting the credibility index for meta-analyses, in which it can provide a suitable diagnostic value for modeling fixed and random effects.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.