Tianping Peng, Xiujian Ma, Wei Hua, Changwen Wang, Youjun Chu, Meng Sun, Valentina Fermi, Stefan Hamelmann, Katharina Lindner, Chunxuan Shao, Julia Zaman, Weili Tian, Yue Zhuo, Yassin Harim, Nadja Stöffler, Linda Hammann, Qungen Xiao, Xiaoliang Jin, Rolf Warta, Catharina Lotsch, Ying Mao
{"title":"Individualized patient tumor organoids faithfully preserve human brain tumor ecosystems and predict patient response to therapy","authors":"Tianping Peng, Xiujian Ma, Wei Hua, Changwen Wang, Youjun Chu, Meng Sun, Valentina Fermi, Stefan Hamelmann, Katharina Lindner, Chunxuan Shao, Julia Zaman, Weili Tian, Yue Zhuo, Yassin Harim, Nadja Stöffler, Linda Hammann, Qungen Xiao, Xiaoliang Jin, Rolf Warta, Catharina Lotsch, Ying Mao","doi":"10.1016/j.stem.2025.01.002","DOIUrl":null,"url":null,"abstract":"Tumor organoids are important tools for cancer research, but current models have drawbacks that limit their applications for predicting response to therapy. Here, we developed a fast, efficient, and complex culture system (IPTO, individualized patient tumor organoid) that accurately recapitulates the cellular and molecular pathology of human brain tumors. Patient-derived tumor explants were cultured in induced pluripotent stem cell (iPSC)-derived cerebral organoids, thus enabling culture of a wide range of human tumors in the central nervous system (CNS), including adult, pediatric, and metastatic brain cancers. Histopathological, genomic, epigenomic, and single-cell RNA sequencing (scRNA-seq) analyses demonstrated that the IPTO model recapitulates cellular heterogeneity and molecular features of original tumors. Crucially, we showed that the IPTO model predicts patient-specific drug responses, including resistance mechanisms, in a prospective patient cohort. Collectively, the IPTO model represents a major breakthrough in preclinical modeling of human cancers, which provides a path toward personalized cancer therapy.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"86 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2025.01.002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor organoids are important tools for cancer research, but current models have drawbacks that limit their applications for predicting response to therapy. Here, we developed a fast, efficient, and complex culture system (IPTO, individualized patient tumor organoid) that accurately recapitulates the cellular and molecular pathology of human brain tumors. Patient-derived tumor explants were cultured in induced pluripotent stem cell (iPSC)-derived cerebral organoids, thus enabling culture of a wide range of human tumors in the central nervous system (CNS), including adult, pediatric, and metastatic brain cancers. Histopathological, genomic, epigenomic, and single-cell RNA sequencing (scRNA-seq) analyses demonstrated that the IPTO model recapitulates cellular heterogeneity and molecular features of original tumors. Crucially, we showed that the IPTO model predicts patient-specific drug responses, including resistance mechanisms, in a prospective patient cohort. Collectively, the IPTO model represents a major breakthrough in preclinical modeling of human cancers, which provides a path toward personalized cancer therapy.
期刊介绍:
Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.