Jeha Jeon, Young Cha, Yean Ju Hong, In-Hee Lee, Heejin Jang, Sanghyeok Ko, Serhiy Naumenko, Minseon Kim, Hannah L. Ryu, Zenith Shrestha, Nayeon Lee, Tae-Yoon Park, HoeWon Park, Seo-Hyun Kim, Ki-Jun Yoon, Bin Song, Jeffrey Schweitzer, Todd M. Herrington, Sek Won Kong, Bob Carter, Kwang-Soo Kim
{"title":"Pre-clinical safety and efficacy of human induced pluripotent stem cell-derived products for autologous cell therapy in Parkinson’s disease","authors":"Jeha Jeon, Young Cha, Yean Ju Hong, In-Hee Lee, Heejin Jang, Sanghyeok Ko, Serhiy Naumenko, Minseon Kim, Hannah L. Ryu, Zenith Shrestha, Nayeon Lee, Tae-Yoon Park, HoeWon Park, Seo-Hyun Kim, Ki-Jun Yoon, Bin Song, Jeffrey Schweitzer, Todd M. Herrington, Sek Won Kong, Bob Carter, Kwang-Soo Kim","doi":"10.1016/j.stem.2025.01.006","DOIUrl":null,"url":null,"abstract":"Human induced pluripotent stem cell (hiPSC)-derived midbrain dopaminergic cells (mDACs) represent a promising source for autologous cell therapy in Parkinson’s disease (PD), but standardized regulatory criteria are essential for clinical translation. In this pre-clinical study, we generated multiple clinical-grade hiPSC lines from freshly biopsied fibroblasts of four sporadic PD patients using episomal reprogramming and differentiated them into mDACs using a refined 21-day protocol. Rigorous evaluations included whole-genome/exome sequencing, RNA sequencing, and <em>in vivo</em> studies, including a 39-week Good Laboratory Practice-compliant mouse safety study. While mDACs from all lines met safety criteria, mDACs from one patient failed to improve rodent behavioral outcomes, underscoring inter-individual variability. Importantly, <em>in vitro</em> assessments did not reliably predict <em>in vivo</em> efficacy, identifying dopaminergic fiber density as a key efficacy criterion. These findings support comprehensive quality control guidelines for autologous cell therapy and pave the way for a clinical trial with eight sporadic PD patients, scheduled to commence in 2025.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"78 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2025.01.006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Human induced pluripotent stem cell (hiPSC)-derived midbrain dopaminergic cells (mDACs) represent a promising source for autologous cell therapy in Parkinson’s disease (PD), but standardized regulatory criteria are essential for clinical translation. In this pre-clinical study, we generated multiple clinical-grade hiPSC lines from freshly biopsied fibroblasts of four sporadic PD patients using episomal reprogramming and differentiated them into mDACs using a refined 21-day protocol. Rigorous evaluations included whole-genome/exome sequencing, RNA sequencing, and in vivo studies, including a 39-week Good Laboratory Practice-compliant mouse safety study. While mDACs from all lines met safety criteria, mDACs from one patient failed to improve rodent behavioral outcomes, underscoring inter-individual variability. Importantly, in vitro assessments did not reliably predict in vivo efficacy, identifying dopaminergic fiber density as a key efficacy criterion. These findings support comprehensive quality control guidelines for autologous cell therapy and pave the way for a clinical trial with eight sporadic PD patients, scheduled to commence in 2025.
期刊介绍:
Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.