Pre-clinical safety and efficacy of human induced pluripotent stem cell-derived products for autologous cell therapy in Parkinson’s disease

IF 19.8 1区 医学 Q1 CELL & TISSUE ENGINEERING Cell stem cell Pub Date : 2025-02-13 DOI:10.1016/j.stem.2025.01.006
Jeha Jeon, Young Cha, Yean Ju Hong, In-Hee Lee, Heejin Jang, Sanghyeok Ko, Serhiy Naumenko, Minseon Kim, Hannah L. Ryu, Zenith Shrestha, Nayeon Lee, Tae-Yoon Park, HoeWon Park, Seo-Hyun Kim, Ki-Jun Yoon, Bin Song, Jeffrey Schweitzer, Todd M. Herrington, Sek Won Kong, Bob Carter, Kwang-Soo Kim
{"title":"Pre-clinical safety and efficacy of human induced pluripotent stem cell-derived products for autologous cell therapy in Parkinson’s disease","authors":"Jeha Jeon, Young Cha, Yean Ju Hong, In-Hee Lee, Heejin Jang, Sanghyeok Ko, Serhiy Naumenko, Minseon Kim, Hannah L. Ryu, Zenith Shrestha, Nayeon Lee, Tae-Yoon Park, HoeWon Park, Seo-Hyun Kim, Ki-Jun Yoon, Bin Song, Jeffrey Schweitzer, Todd M. Herrington, Sek Won Kong, Bob Carter, Kwang-Soo Kim","doi":"10.1016/j.stem.2025.01.006","DOIUrl":null,"url":null,"abstract":"Human induced pluripotent stem cell (hiPSC)-derived midbrain dopaminergic cells (mDACs) represent a promising source for autologous cell therapy in Parkinson’s disease (PD), but standardized regulatory criteria are essential for clinical translation. In this pre-clinical study, we generated multiple clinical-grade hiPSC lines from freshly biopsied fibroblasts of four sporadic PD patients using episomal reprogramming and differentiated them into mDACs using a refined 21-day protocol. Rigorous evaluations included whole-genome/exome sequencing, RNA sequencing, and <em>in vivo</em> studies, including a 39-week Good Laboratory Practice-compliant mouse safety study. While mDACs from all lines met safety criteria, mDACs from one patient failed to improve rodent behavioral outcomes, underscoring inter-individual variability. Importantly, <em>in vitro</em> assessments did not reliably predict <em>in vivo</em> efficacy, identifying dopaminergic fiber density as a key efficacy criterion. These findings support comprehensive quality control guidelines for autologous cell therapy and pave the way for a clinical trial with eight sporadic PD patients, scheduled to commence in 2025.","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"78 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2025.01.006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Human induced pluripotent stem cell (hiPSC)-derived midbrain dopaminergic cells (mDACs) represent a promising source for autologous cell therapy in Parkinson’s disease (PD), but standardized regulatory criteria are essential for clinical translation. In this pre-clinical study, we generated multiple clinical-grade hiPSC lines from freshly biopsied fibroblasts of four sporadic PD patients using episomal reprogramming and differentiated them into mDACs using a refined 21-day protocol. Rigorous evaluations included whole-genome/exome sequencing, RNA sequencing, and in vivo studies, including a 39-week Good Laboratory Practice-compliant mouse safety study. While mDACs from all lines met safety criteria, mDACs from one patient failed to improve rodent behavioral outcomes, underscoring inter-individual variability. Importantly, in vitro assessments did not reliably predict in vivo efficacy, identifying dopaminergic fiber density as a key efficacy criterion. These findings support comprehensive quality control guidelines for autologous cell therapy and pave the way for a clinical trial with eight sporadic PD patients, scheduled to commence in 2025.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell stem cell
Cell stem cell 生物-细胞生物学
CiteScore
37.10
自引率
2.50%
发文量
151
审稿时长
42 days
期刊介绍: Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.
期刊最新文献
Pre-clinical safety and efficacy of human induced pluripotent stem cell-derived products for autologous cell therapy in Parkinson’s disease Individualized patient tumor organoids faithfully preserve human brain tumor ecosystems and predict patient response to therapy Neural stem cell quiescence and activation dynamics are regulated by feedback input from their progeny under homeostatic and regenerative conditions Cognitive impairment in epilepsy progression: Adult neurogenesis loss at critical window Pre-birth stem cell education: A gift from mother’s bugs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1