Zhewen Ouyang, Zengdong Tan, Usman Ali, Ying Zhang, Bo Li, Xuan Yao, Bao Yang, Liang Guo
{"title":"Ceramide-1-phosphate enhances defense responses against Sclerotinia sclerotiorum in Brassica napus","authors":"Zhewen Ouyang, Zengdong Tan, Usman Ali, Ying Zhang, Bo Li, Xuan Yao, Bao Yang, Liang Guo","doi":"10.1093/plphys/kiae649","DOIUrl":null,"url":null,"abstract":"Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most severe diseases affecting the growth and production of Brassica napus. Sphingolipid metabolism plays a crucial role in plant response to pathogens. In this study, we show that ceramide kinase (CERK) is significantly induced during S. sclerotiorum infection to produce higher levels of ceramide-1-phosphate (C1P) in B. napus. The balance between ceramide (Cer) and C1P affects plant resistance to S. sclerotiorum, with CERK mutant lines exhibiting greater susceptibility to S. sclerotiorum and CERK overexpression lines showing enhanced resistance to this pathogen. Moreover, we identified candidate C1P-binding proteins by proteomic analysis and determined that C1P binds to and promotes the activity of a Gly–Asp–Ser–Leu lipase protein involved in B. napus resistance to S. sclerotiorum infection. In conclusion, our results indicate that C1P plays a key role in S. sclerotiorum resistance through metabolic regulation and signal transduction in B. napus.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"17 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae649","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most severe diseases affecting the growth and production of Brassica napus. Sphingolipid metabolism plays a crucial role in plant response to pathogens. In this study, we show that ceramide kinase (CERK) is significantly induced during S. sclerotiorum infection to produce higher levels of ceramide-1-phosphate (C1P) in B. napus. The balance between ceramide (Cer) and C1P affects plant resistance to S. sclerotiorum, with CERK mutant lines exhibiting greater susceptibility to S. sclerotiorum and CERK overexpression lines showing enhanced resistance to this pathogen. Moreover, we identified candidate C1P-binding proteins by proteomic analysis and determined that C1P binds to and promotes the activity of a Gly–Asp–Ser–Leu lipase protein involved in B. napus resistance to S. sclerotiorum infection. In conclusion, our results indicate that C1P plays a key role in S. sclerotiorum resistance through metabolic regulation and signal transduction in B. napus.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.