Token and part-of-speech fusion for pretraining of transformers with application in automatic cyberbullying detection

Nor Saiful Azam Bin Nor Azmi , Michal Ptaszynski , Fumito Masui , Juuso Eronen , Karol Nowakowski
{"title":"Token and part-of-speech fusion for pretraining of transformers with application in automatic cyberbullying detection","authors":"Nor Saiful Azam Bin Nor Azmi ,&nbsp;Michal Ptaszynski ,&nbsp;Fumito Masui ,&nbsp;Juuso Eronen ,&nbsp;Karol Nowakowski","doi":"10.1016/j.nlp.2025.100132","DOIUrl":null,"url":null,"abstract":"<div><div>Cyberbullying detection remains a significant challenge in the context of expanding internet and social media usage. This study proposes a novel pretraining methodology for transformer models, integrating Part-of-Speech (POS) information with a unique way of tokenization. The proposed model, based on the ELECTRA architecture, undergoes pretraining and fine-tuning and is referred to as ELECTRA_POS. By leveraging linguistic structures, this approach improves understanding of context and subtle meaning in the text. Through evaluation using the GLUE benchmark and a dedicated cyberbullying detection dataset, ELECTRA_POS consistently delivers enhanced performance compared to conventional transformer models. Key contributions include the introduction of POS-token fusion techniques and their application to improve cyberbullying detection, as well as insights into how linguistic features influence transformer-based models. The result highlights how integrating POS information into the transformer model improves the detection of harmful online behavior while benefiting other natural language processing (NLP) tasks.</div></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"10 ","pages":"Article 100132"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719125000081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cyberbullying detection remains a significant challenge in the context of expanding internet and social media usage. This study proposes a novel pretraining methodology for transformer models, integrating Part-of-Speech (POS) information with a unique way of tokenization. The proposed model, based on the ELECTRA architecture, undergoes pretraining and fine-tuning and is referred to as ELECTRA_POS. By leveraging linguistic structures, this approach improves understanding of context and subtle meaning in the text. Through evaluation using the GLUE benchmark and a dedicated cyberbullying detection dataset, ELECTRA_POS consistently delivers enhanced performance compared to conventional transformer models. Key contributions include the introduction of POS-token fusion techniques and their application to improve cyberbullying detection, as well as insights into how linguistic features influence transformer-based models. The result highlights how integrating POS information into the transformer model improves the detection of harmful online behavior while benefiting other natural language processing (NLP) tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Token and part-of-speech fusion for pretraining of transformers with application in automatic cyberbullying detection Machine learning vs. rule-based methods for document classification of electronic health records within mental health care—A systematic literature review A survey on chatbots and large language models: Testing and evaluation techniques Emotion on the edge: An evaluation of feature representations and machine learning models RESPECT: A framework for promoting inclusive and respectful conversations in online communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1