Kiwifruit harvesting impedance control and optimisation

IF 4.4 1区 农林科学 Q1 AGRICULTURAL ENGINEERING Biosystems Engineering Pub Date : 2025-02-12 DOI:10.1016/j.biosystemseng.2025.01.015
Zixu Li , Zhi He , Wei Hao , Xu Wang , Xinting Ding , Yongjie Cui
{"title":"Kiwifruit harvesting impedance control and optimisation","authors":"Zixu Li ,&nbsp;Zhi He ,&nbsp;Wei Hao ,&nbsp;Xu Wang ,&nbsp;Xinting Ding ,&nbsp;Yongjie Cui","doi":"10.1016/j.biosystemseng.2025.01.015","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a flexible kiwifruit grasping strategy using impedance control to extend storage time, reduce picking costs, and minimise mechanical damage during harvesting. The main contribution of this strategy is integrating a fuzzy PID controller into the impedance-based kiwifruit picking system, which significantly reduces mechanical damage during the picking process. Compression tests were performed on kiwifruit to obtain viscoelastic parameters, and the Burgers model was used to describe the rheological behaviour to understand the deformation characteristics of kiwifruit under force. Subsequently, a force-based impedance control system was established using the relationship between contact force and gripper displacement to achieve precise control of the fruit-grasping process. Additionally, to enhance the performance of the impedance control system, an optimised solution was applied at the controller output. Simulation analysis shows that the optimised fuzzy PID control strategy reduced the system's settling time from 1.91 s to 1.08 s compared to traditional impedance control systems. Experimental results further validate that the new control strategy effectively reduces fruit damage, achieving flexible and high-quality kiwifruit picking. This approach also provides valuable technical references for the post-harvest automation of other soft fruits and vegetables.</div></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"251 ","pages":"Pages 101-116"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511025000157","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a flexible kiwifruit grasping strategy using impedance control to extend storage time, reduce picking costs, and minimise mechanical damage during harvesting. The main contribution of this strategy is integrating a fuzzy PID controller into the impedance-based kiwifruit picking system, which significantly reduces mechanical damage during the picking process. Compression tests were performed on kiwifruit to obtain viscoelastic parameters, and the Burgers model was used to describe the rheological behaviour to understand the deformation characteristics of kiwifruit under force. Subsequently, a force-based impedance control system was established using the relationship between contact force and gripper displacement to achieve precise control of the fruit-grasping process. Additionally, to enhance the performance of the impedance control system, an optimised solution was applied at the controller output. Simulation analysis shows that the optimised fuzzy PID control strategy reduced the system's settling time from 1.91 s to 1.08 s compared to traditional impedance control systems. Experimental results further validate that the new control strategy effectively reduces fruit damage, achieving flexible and high-quality kiwifruit picking. This approach also provides valuable technical references for the post-harvest automation of other soft fruits and vegetables.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosystems Engineering
Biosystems Engineering 农林科学-农业工程
CiteScore
10.60
自引率
7.80%
发文量
239
审稿时长
53 days
期刊介绍: Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.
期刊最新文献
Evaluating the potential of airborne hyperspectral imagery in monitoring common beans with common bacterial blight at different infection stages A novel framework for developing accurate and explainable leaf nitrogen content estimation model for aquilaria sinensis seedlings using canopy RGB imagery An omnidirectional dynamic levelling system with less tuning parameters for mountainous tea plantations Kiwifruit harvesting impedance control and optimisation Re-identification for long-term tracking and management of health and welfare challenges in pigs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1