Exploring social, economic, and ecological drivers of human well-being in the Qinling Mountains, China

IF 6.2 2区 经济学 Q1 ECONOMICS Socio-economic Planning Sciences Pub Date : 2025-02-07 DOI:10.1016/j.seps.2025.102176
Chenlu Li , Qian Wang , Wen Xiang , Huixia Wang , Zuoqiang Yuan , Fei Yu , Wenfang Xie
{"title":"Exploring social, economic, and ecological drivers of human well-being in the Qinling Mountains, China","authors":"Chenlu Li ,&nbsp;Qian Wang ,&nbsp;Wen Xiang ,&nbsp;Huixia Wang ,&nbsp;Zuoqiang Yuan ,&nbsp;Fei Yu ,&nbsp;Wenfang Xie","doi":"10.1016/j.seps.2025.102176","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the effects of different factors on human well-being (HWB) is essential for achieving sustainable development. Recent related studies have mainly focused on the effects of socioeconomic or ecological environmental factors on HWB, while less effort has been devoted to quantitatively assessing the long-term effects of multiple variables on HWB. In this study, we applied a spatial regression model to data representing 19 social, economic, and ecological environmental variables to characterize the spatial pattern of the county-level HWB in the Qinling Region. First, we quantified the HWB in 2000, 2010 and 2020, and then, we analyzed its spatial heterogeneity in the Qinling Region. Correlation analysis, multicollinearity test, and ordinary least squares (OLS) analysis were used to identify three and four key factors in 2000 and 2020, respectively. Finally, the performances of the OLS, geographically-weighted regression (GWR), and multi-scale geographically weighted regression (MGWR) methods were compared, and it was found that the MGWR achieved the best overall performance. The model results indicated that the significant factors in 2000 included the disposable income of rural households, the number of health profession technicians, and the average annual temperature; those in 2020 included the disposable income of urban households, the number of beds in medical and health institutions, and the average annual precipitation. Economic factors had the strongest coefficient of influence, and the western Qinling Region was the most vulnerable. Selecting impact factors from multiple dimensions and conducting multi-model comparisons can help improve the reliability of our results. The results of this study provide a scientific reference for improving human well-being and for achieving sustainable development in the Qinlinig Region.</div></div>","PeriodicalId":22033,"journal":{"name":"Socio-economic Planning Sciences","volume":"98 ","pages":"Article 102176"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Socio-economic Planning Sciences","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038012125000254","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the effects of different factors on human well-being (HWB) is essential for achieving sustainable development. Recent related studies have mainly focused on the effects of socioeconomic or ecological environmental factors on HWB, while less effort has been devoted to quantitatively assessing the long-term effects of multiple variables on HWB. In this study, we applied a spatial regression model to data representing 19 social, economic, and ecological environmental variables to characterize the spatial pattern of the county-level HWB in the Qinling Region. First, we quantified the HWB in 2000, 2010 and 2020, and then, we analyzed its spatial heterogeneity in the Qinling Region. Correlation analysis, multicollinearity test, and ordinary least squares (OLS) analysis were used to identify three and four key factors in 2000 and 2020, respectively. Finally, the performances of the OLS, geographically-weighted regression (GWR), and multi-scale geographically weighted regression (MGWR) methods were compared, and it was found that the MGWR achieved the best overall performance. The model results indicated that the significant factors in 2000 included the disposable income of rural households, the number of health profession technicians, and the average annual temperature; those in 2020 included the disposable income of urban households, the number of beds in medical and health institutions, and the average annual precipitation. Economic factors had the strongest coefficient of influence, and the western Qinling Region was the most vulnerable. Selecting impact factors from multiple dimensions and conducting multi-model comparisons can help improve the reliability of our results. The results of this study provide a scientific reference for improving human well-being and for achieving sustainable development in the Qinlinig Region.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Socio-economic Planning Sciences
Socio-economic Planning Sciences OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
9.40
自引率
13.10%
发文量
294
审稿时长
58 days
期刊介绍: Studies directed toward the more effective utilization of existing resources, e.g. mathematical programming models of health care delivery systems with relevance to more effective program design; systems analysis of fire outbreaks and its relevance to the location of fire stations; statistical analysis of the efficiency of a developing country economy or industry. Studies relating to the interaction of various segments of society and technology, e.g. the effects of government health policies on the utilization and design of hospital facilities; the relationship between housing density and the demands on public transportation or other service facilities: patterns and implications of urban development and air or water pollution. Studies devoted to the anticipations of and response to future needs for social, health and other human services, e.g. the relationship between industrial growth and the development of educational resources in affected areas; investigation of future demands for material and child health resources in a developing country; design of effective recycling in an urban setting.
期刊最新文献
Cluster-based healthcare network design problem with referral system using a hybrid genetic algorithm Exploring social, economic, and ecological drivers of human well-being in the Qinling Mountains, China The local effects and neighborhood effects of high-speed railway on urban entrepreneurial vitality: Evidence from China Optimizing training efficiency amid postgraduate enrollment expansion: A new parallel network DEA allocation model A hybrid decision support system for transport policy selection: A case study on Russia's Northern Sea route in Artic region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1