{"title":"L2 decay of weak solutions for the Navier–Stokes equations with supercritical dissipation","authors":"Wilberclay G. Melo","doi":"10.1016/j.nonrwa.2025.104329","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we establish temporal decay for a weak solution <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> (with initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) of the Navier–Stokes equations with supercritical fractional dissipation <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow></mrow></math></span> in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> (<span><math><mrow><mi>s</mi><mo>≤</mo><mn>0</mn></mrow></math></span>). More precisely, we prove that <span><math><mi>u</mi></math></span> satisfies the following upper bound: <span><math><mrow><msubsup><mrow><mo>‖</mo><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>‖</mo></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≤</mo><mi>C</mi><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mfrac><mrow><mn>3</mn><mo>−</mo><mn>2</mn><mi>p</mi></mrow><mrow><mn>2</mn><mi>α</mi></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace><mo>∀</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>.</mo></mrow></math></span> This estimate leads us to show the next inequality: <span><math><mrow><msubsup><mrow><mo>‖</mo><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>‖</mo></mrow><mrow><msup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mo>−</mo><mi>δ</mi></mrow></msup></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≤</mo><mi>C</mi><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mfrac><mrow><mn>3</mn><mo>−</mo><mn>2</mn><mi>δ</mi><mo>−</mo><mn>2</mn><mi>p</mi></mrow><mrow><mn>2</mn><mi>α</mi></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace><mo>∀</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>.</mo></mrow></math></span> These results are obtained by applying standard Fourier Analysis and they hold for <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>)</mo></mrow><mo>,</mo></mrow></math></span> <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>δ</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>3</mn><mo>−</mo><mn>2</mn><mi>p</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow><mo>∩</mo><msup><mrow><mi>Y</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> (and also <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>p</mi><mo>=</mo><mo>−</mo><mn>1</mn></mrow></math></span> and a certain finite set of values of <span><math><mi>α</mi></math></span>).</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"84 ","pages":"Article 104329"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S146812182500015X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we establish temporal decay for a weak solution (with initial data ) of the Navier–Stokes equations with supercritical fractional dissipation in and (). More precisely, we prove that satisfies the following upper bound: This estimate leads us to show the next inequality: These results are obtained by applying standard Fourier Analysis and they hold for , and (and also for and a certain finite set of values of ).
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.