Linlu Jin, Yixue Qin, Yunran Zhao, Xintong Zhou, Ye Zeng
{"title":"Endothelial cytoskeleton in mechanotransduction and vascular diseases","authors":"Linlu Jin, Yixue Qin, Yunran Zhao, Xintong Zhou, Ye Zeng","doi":"10.1016/j.jbiomech.2025.112579","DOIUrl":null,"url":null,"abstract":"<div><div>The cytoskeleton is an important structural component that regulates various aspects of cell morphology, movement, and intracellular signaling. It plays a pivotal role in the cellular response to biomechanical stimuli, particularly in endothelial cells, which are critical for vascular homeostasis and the pathogenesis of cardiovascular diseases. Mechanical forces, such as shear and tension, activate intracellular signaling cascades that regulate transcription, translation, and cellular behaviors. Despite extensive research into cytoskeletal functions, the precise mechanisms by which the cytoskeleton transduces mechanical signals remain incompletely understood. This review focuses on the role of cytoskeletal components in membrane, cytoplasm, and nucleus in mechanotransduction, with an emphasis on their structure, mechanical and biological behaviors, dynamic interactions, and response to mechanical forces. The collaboration between membrane cytoskeleton, cytoplasmic cytoskeleton, and nucleoskeleton is indispensable for endothelial cells to respond to mechanical stimuli. Understanding their mechanoresponsive mechanisms is essential for advancing therapeutic strategies for cardiovascular diseases.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"182 ","pages":"Article 112579"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025000909","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The cytoskeleton is an important structural component that regulates various aspects of cell morphology, movement, and intracellular signaling. It plays a pivotal role in the cellular response to biomechanical stimuli, particularly in endothelial cells, which are critical for vascular homeostasis and the pathogenesis of cardiovascular diseases. Mechanical forces, such as shear and tension, activate intracellular signaling cascades that regulate transcription, translation, and cellular behaviors. Despite extensive research into cytoskeletal functions, the precise mechanisms by which the cytoskeleton transduces mechanical signals remain incompletely understood. This review focuses on the role of cytoskeletal components in membrane, cytoplasm, and nucleus in mechanotransduction, with an emphasis on their structure, mechanical and biological behaviors, dynamic interactions, and response to mechanical forces. The collaboration between membrane cytoskeleton, cytoplasmic cytoskeleton, and nucleoskeleton is indispensable for endothelial cells to respond to mechanical stimuli. Understanding their mechanoresponsive mechanisms is essential for advancing therapeutic strategies for cardiovascular diseases.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.