Nasonkwe Hampwaye , Jie Wang , Alistair Revell , Emily Manchester , Thomas Aldersley , Liesl Zuhlke , Bernard Keavney , Malebogo Ngoepe
{"title":"Growth in a two-dimensional model of coarctation of the aorta: A CFD-informed agent based model","authors":"Nasonkwe Hampwaye , Jie Wang , Alistair Revell , Emily Manchester , Thomas Aldersley , Liesl Zuhlke , Bernard Keavney , Malebogo Ngoepe","doi":"10.1016/j.jbiomech.2025.112514","DOIUrl":null,"url":null,"abstract":"<div><div>In the individualized treatment of a patient with Coarctation of the Aorta (CoA), a non-severe case which initially exhibits no symptoms, and thus requires no treatment, could potentially become severe over time. This progression can be attributed to insufficient growth at the coarctation site relative to the overall growth of the child. Therefore, an agent-based model (ABM) to predict the aortic growth of a CoA patient is introduced. The multi-scale approach combines Computational Fluid Dynamics (CFD) and ABM to study systems that are influenced by both mechanical stimuli and biochemical responses characteristic of growth. Our focus is on ABM development; thus, CFD insights were applied solely to enhance the ABM framework. Comparative medicine was leveraged to develop a species-specific ABM by considering the rat and porcine species commonly used in cardiovascular research together with data from healthy human toddlers. The ABM luminal radius prediction accuracy was observed to be 79% for rat, above 95% for porcine and 91. 6% for the healthy toddler; while that observed for the growth rate was 38.7%, 90% and 64.3% respectively. Given its performance, the ABM was adapted to a 2.5-year-old patient-specific CoA. Subsequently, the model predicted that by age 3, the condition would worsen, marked by persistent CoA enhanced by the predicted least growth compared to growth predicted in the rest of the aorta, hypertension, and increased turbulent flow; thus, increased vessel injury risk. The findings advise for incorporating vascular remodelling into the ABM to enhance its predictive capability for intervention planning.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"182 ","pages":"Article 112514"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025000247","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the individualized treatment of a patient with Coarctation of the Aorta (CoA), a non-severe case which initially exhibits no symptoms, and thus requires no treatment, could potentially become severe over time. This progression can be attributed to insufficient growth at the coarctation site relative to the overall growth of the child. Therefore, an agent-based model (ABM) to predict the aortic growth of a CoA patient is introduced. The multi-scale approach combines Computational Fluid Dynamics (CFD) and ABM to study systems that are influenced by both mechanical stimuli and biochemical responses characteristic of growth. Our focus is on ABM development; thus, CFD insights were applied solely to enhance the ABM framework. Comparative medicine was leveraged to develop a species-specific ABM by considering the rat and porcine species commonly used in cardiovascular research together with data from healthy human toddlers. The ABM luminal radius prediction accuracy was observed to be 79% for rat, above 95% for porcine and 91. 6% for the healthy toddler; while that observed for the growth rate was 38.7%, 90% and 64.3% respectively. Given its performance, the ABM was adapted to a 2.5-year-old patient-specific CoA. Subsequently, the model predicted that by age 3, the condition would worsen, marked by persistent CoA enhanced by the predicted least growth compared to growth predicted in the rest of the aorta, hypertension, and increased turbulent flow; thus, increased vessel injury risk. The findings advise for incorporating vascular remodelling into the ABM to enhance its predictive capability for intervention planning.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.