Ningning Sun , Fei Xie , Longfei Yin , Houpu Yang , Guohua Wu , Shu Wang
{"title":"An modified RamanNet model integrated with serum Raman spectroscopy for breast cancer screening","authors":"Ningning Sun , Fei Xie , Longfei Yin , Houpu Yang , Guohua Wu , Shu Wang","doi":"10.1016/j.vibspec.2025.103782","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the characteristics of spectral data, Nabil Ibtehaz et al. (2023) proposed a generalized neural network architecture for Raman spectroscopy analysis, called RamanNet. This paper applies it to breast cancer screening and proposes an modified RamanNet method to optimize the classification performance of breast cancer and healthy individuals. The modified model accelerates convergence and reduces overfitting by incorporating L2 regularization, removing TripletLoss, and adjusting the learning rate. Results demonstrate that the modified RamanNet achieved a higher accuracy (96.0 ± 1.7 %) and sensitivity (96.8 ± 3.0 %) in distinguishing between breast cancer patients and healthy controls, outperforming both the 1D-CNN (accuracy: 91.8 ± 2.9 %; sensitivity: 89.3 ± 5.1 %) and the original RamanNet (accuracy: 92.5 ± 3.2 %; sensitivity: 94.6 ± 5.6 %). Furthermore, the model demonstrated enhancements in training time, convergence speed and stability, which provides a new technological approach for non-invasive and rapid breast cancer screening with great potential for clinical application.</div></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"137 ","pages":"Article 103782"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203125000165","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the characteristics of spectral data, Nabil Ibtehaz et al. (2023) proposed a generalized neural network architecture for Raman spectroscopy analysis, called RamanNet. This paper applies it to breast cancer screening and proposes an modified RamanNet method to optimize the classification performance of breast cancer and healthy individuals. The modified model accelerates convergence and reduces overfitting by incorporating L2 regularization, removing TripletLoss, and adjusting the learning rate. Results demonstrate that the modified RamanNet achieved a higher accuracy (96.0 ± 1.7 %) and sensitivity (96.8 ± 3.0 %) in distinguishing between breast cancer patients and healthy controls, outperforming both the 1D-CNN (accuracy: 91.8 ± 2.9 %; sensitivity: 89.3 ± 5.1 %) and the original RamanNet (accuracy: 92.5 ± 3.2 %; sensitivity: 94.6 ± 5.6 %). Furthermore, the model demonstrated enhancements in training time, convergence speed and stability, which provides a new technological approach for non-invasive and rapid breast cancer screening with great potential for clinical application.
期刊介绍:
Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation.
The topics covered by the journal include:
Sampling techniques,
Vibrational spectroscopy coupled with separation techniques,
Instrumentation (Fourier transform, conventional and laser based),
Data manipulation,
Spectra-structure correlation and group frequencies.
The application areas covered include:
Analytical chemistry,
Bio-organic and bio-inorganic chemistry,
Organic chemistry,
Inorganic chemistry,
Catalysis,
Environmental science,
Industrial chemistry,
Materials science,
Physical chemistry,
Polymer science,
Process control,
Specialized problem solving.