Lixinran Zhao , Keyao Li , Sokhibjon Turdalievich Matkarimov , Cheng Liu , Shenxu Bao , Siyuan Yang
{"title":"Mechanical activation improves green depressant starch for the flotation separation of pyrite from chalcopyrite via molecular structure optimization","authors":"Lixinran Zhao , Keyao Li , Sokhibjon Turdalievich Matkarimov , Cheng Liu , Shenxu Bao , Siyuan Yang","doi":"10.1016/j.molliq.2025.127122","DOIUrl":null,"url":null,"abstract":"<div><div>For the first time, the present study uses the mechanically activating method to enhance the depression selectivity of natural polymers, which applies the mechanically activated starch (MAS) for the flotation depression of pyrite from chalcopyrite. After the addition of MAS prepared in an appropriate condition, the flotation recovery of pyrite decreased by 72 % while the chalcopyrite recovery remained nearly unaffected. Adsorption tests, Zeta potential measurements and X-ray photoelectron spectroscopy (XPS) analysis show that MAS primarily chemisorbed onto the pyrite surface by forming covalent bonds with surface iron atoms, thereby reducing its hydrophobicity. Proton nuclear magnetic resonance (<sup>1</sup>HNMR) test results indicate that mechanical activation can alter the internal structure of MAS, thereby increasing its activity. Frontier orbital analysis and molecular dynamics simulations further confirm the chemisorption of MAS on the pyrite surface and the MAS prepared under different intensities of mechanical activations have different adsorption abilities on the pyrite surface. The MAS prepared under moderate mechanical activation has the best adsorption and depression abilities, which is attributed to the exposure of more interacting sites and remains of relatively large molecular weight. This research highlights the potential of MAS as an environmentally friendly alternative to traditional macromolecular depressants, offering a sustainable approach that can reduce environmental impact. It also provides valuable insights into the novel application of mechanically activated polymers in the field of mineral flotation.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"424 ","pages":"Article 127122"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732225002880","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
For the first time, the present study uses the mechanically activating method to enhance the depression selectivity of natural polymers, which applies the mechanically activated starch (MAS) for the flotation depression of pyrite from chalcopyrite. After the addition of MAS prepared in an appropriate condition, the flotation recovery of pyrite decreased by 72 % while the chalcopyrite recovery remained nearly unaffected. Adsorption tests, Zeta potential measurements and X-ray photoelectron spectroscopy (XPS) analysis show that MAS primarily chemisorbed onto the pyrite surface by forming covalent bonds with surface iron atoms, thereby reducing its hydrophobicity. Proton nuclear magnetic resonance (1HNMR) test results indicate that mechanical activation can alter the internal structure of MAS, thereby increasing its activity. Frontier orbital analysis and molecular dynamics simulations further confirm the chemisorption of MAS on the pyrite surface and the MAS prepared under different intensities of mechanical activations have different adsorption abilities on the pyrite surface. The MAS prepared under moderate mechanical activation has the best adsorption and depression abilities, which is attributed to the exposure of more interacting sites and remains of relatively large molecular weight. This research highlights the potential of MAS as an environmentally friendly alternative to traditional macromolecular depressants, offering a sustainable approach that can reduce environmental impact. It also provides valuable insights into the novel application of mechanically activated polymers in the field of mineral flotation.
期刊介绍:
The journal includes papers in the following areas:
– Simple organic liquids and mixtures
– Ionic liquids
– Surfactant solutions (including micelles and vesicles) and liquid interfaces
– Colloidal solutions and nanoparticles
– Thermotropic and lyotropic liquid crystals
– Ferrofluids
– Water, aqueous solutions and other hydrogen-bonded liquids
– Lubricants, polymer solutions and melts
– Molten metals and salts
– Phase transitions and critical phenomena in liquids and confined fluids
– Self assembly in complex liquids.– Biomolecules in solution
The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include:
– Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.)
– Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.)
– Light scattering (Rayleigh, Brillouin, PCS, etc.)
– Dielectric relaxation
– X-ray and neutron scattering and diffraction.
Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.