{"title":"Streamlined multilayer perceptron for contaminated time series reconstruction: A case study in coastal zones of southern China","authors":"Siyu Qian , Zhaohui Xue , Mingming Jia , Hongsheng Zhang","doi":"10.1016/j.isprsjprs.2025.01.035","DOIUrl":null,"url":null,"abstract":"<div><div>Time series reconstruction is pivotal for enabling continuous, long-term monitoring of environmental changes, particularly in rapidly evolving coastal ecosystems. Despite the array of developed reconstruction methods, they often fail to be effectively applied in coastal zones. In coastal zones, the dynamic environment and frequent cloud cover undermine the effectiveness of existing methods, making it challenging to accurately capture time series variations. Additionally, the need for long-term, large-scale monitoring demands methods that are both efficient and adaptable. To address these challenges, a streamlined multilayer perceptron (SMLP) method is proposed to reconstruct contaminated and long-term time series in coastal zones, consisting of three steps. Firstly, to mitigate the impact of anomalies, we constructed a frequency principle theory (FPT)-based filtering module. Subsequently, to capture variations within the time series, we proposed a frequency domain representation (FDR)-based decomposition module. Finally, considering gaps in time series, we applied an implicit neural representation (INR)-based reconstruction module. SMLP was evaluated using dense Landsat time series data from 1999 to 2019 in southern China, where the data face challenges from noise, gaps, and variations. Qualitative results show that the <span><math><mover><mrow><msub><mrow><mtext>RMSE</mtext></mrow><mrow><mi>c</mi></mrow></msub></mrow><mo>¯</mo></mover></math></span> of SMLP is 0.028, lower than other methods ranging from 0.02 to 0.05. Furthermore, quantitative analysis demonstrates that SMLP is more effective than existing approaches in mitigating the impact of anomalies and accurately capturing variations in time series. Additionally, the rapid operational speed and high transferability of SMLP makes it well-suited for long-term and large-scale applications, providing valuable support for coastal zone research.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"221 ","pages":"Pages 193-209"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271625000401","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Time series reconstruction is pivotal for enabling continuous, long-term monitoring of environmental changes, particularly in rapidly evolving coastal ecosystems. Despite the array of developed reconstruction methods, they often fail to be effectively applied in coastal zones. In coastal zones, the dynamic environment and frequent cloud cover undermine the effectiveness of existing methods, making it challenging to accurately capture time series variations. Additionally, the need for long-term, large-scale monitoring demands methods that are both efficient and adaptable. To address these challenges, a streamlined multilayer perceptron (SMLP) method is proposed to reconstruct contaminated and long-term time series in coastal zones, consisting of three steps. Firstly, to mitigate the impact of anomalies, we constructed a frequency principle theory (FPT)-based filtering module. Subsequently, to capture variations within the time series, we proposed a frequency domain representation (FDR)-based decomposition module. Finally, considering gaps in time series, we applied an implicit neural representation (INR)-based reconstruction module. SMLP was evaluated using dense Landsat time series data from 1999 to 2019 in southern China, where the data face challenges from noise, gaps, and variations. Qualitative results show that the of SMLP is 0.028, lower than other methods ranging from 0.02 to 0.05. Furthermore, quantitative analysis demonstrates that SMLP is more effective than existing approaches in mitigating the impact of anomalies and accurately capturing variations in time series. Additionally, the rapid operational speed and high transferability of SMLP makes it well-suited for long-term and large-scale applications, providing valuable support for coastal zone research.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.